Barretenberg
The ZK-SNARK library at the core of Aztec
Loading...
Searching...
No Matches
bigfield_impl.hpp
Go to the documentation of this file.
1// === AUDIT STATUS ===
2// internal: { status: not started, auditors: [], date: YYYY-MM-DD }
3// external_1: { status: not started, auditors: [], date: YYYY-MM-DD }
4// external_2: { status: not started, auditors: [], date: YYYY-MM-DD }
5// =====================
6
7#pragma once
8
13#include <cstdint>
14#include <tuple>
15
16#include "../circuit_builders/circuit_builders.hpp"
17#include "bigfield.hpp"
18
19#include "../field/field.hpp"
21
22namespace bb::stdlib {
23
24template <typename Builder, typename T>
26 : context(parent_context)
27 , binary_basis_limbs{ Limb(bb::fr(0)), Limb(bb::fr(0)), Limb(bb::fr(0)), Limb(bb::fr(0)) }
28 , prime_basis_limb(context, 0)
29{}
30
31template <typename Builder, typename T>
33 : context(parent_context)
34 , binary_basis_limbs{ Limb(bb::fr(value.slice(0, NUM_LIMB_BITS))),
35 Limb(bb::fr(value.slice(NUM_LIMB_BITS, NUM_LIMB_BITS * 2))),
36 Limb(bb::fr(value.slice(NUM_LIMB_BITS * 2, NUM_LIMB_BITS * 3))),
37 Limb(bb::fr(value.slice(NUM_LIMB_BITS * 3, NUM_LIMB_BITS * 4))) }
38 , prime_basis_limb(context, value)
39{
41}
42
43template <typename Builder, typename T>
45 const field_t<Builder>& high_bits_in,
46 const bool can_overflow,
47 const size_t maximum_bitlength)
48{
49 BB_ASSERT_EQ(low_bits_in.is_constant(), high_bits_in.is_constant());
50 ASSERT((can_overflow == true && maximum_bitlength == 0) ||
51 (can_overflow == false && (maximum_bitlength == 0 || maximum_bitlength > (3 * NUM_LIMB_BITS))));
52
53 // Check that the values of two parts are within specified bounds
54 BB_ASSERT_LT(uint256_t(low_bits_in.get_value()), uint256_t(1) << (NUM_LIMB_BITS * 2));
55 BB_ASSERT_LT(uint256_t(high_bits_in.get_value()), uint256_t(1) << (NUM_LIMB_BITS * 2));
56
57 context = low_bits_in.context == nullptr ? high_bits_in.context : low_bits_in.context;
62 if (!low_bits_in.is_constant()) {
63 // Decompose the low bits into 2 limbs and range constrain them.
64 const auto limb_witnesses =
65 context->decompose_non_native_field_double_width_limb(low_bits_in.get_normalized_witness_index());
66 limb_0.witness_index = limb_witnesses[0];
67 limb_1.witness_index = limb_witnesses[1];
68 field_t<Builder>::evaluate_linear_identity(low_bits_in, -limb_0, -limb_1 * shift_1, field_t<Builder>(0));
69 } else {
70 uint256_t slice_0 = uint256_t(low_bits_in.additive_constant).slice(0, NUM_LIMB_BITS);
71 uint256_t slice_1 = uint256_t(low_bits_in.additive_constant).slice(NUM_LIMB_BITS, 2 * NUM_LIMB_BITS);
72 limb_0 = field_t(context, bb::fr(slice_0));
73 limb_1 = field_t(context, bb::fr(slice_1));
74 }
75
76 // If we wish to continue working with this element with lazy reductions - i.e. not moding out again after each
77 // addition we apply a more limited range - 2^s for smallest s such that p<2^s (this is the case can_overflow ==
78 // false)
79 uint64_t num_last_limb_bits = (can_overflow) ? NUM_LIMB_BITS : NUM_LAST_LIMB_BITS;
80
81 // if maximum_bitlength is set, this supercedes can_overflow
82 if (maximum_bitlength > 0) {
83 BB_ASSERT_GT(maximum_bitlength, 3 * NUM_LIMB_BITS);
84 BB_ASSERT_LTE(maximum_bitlength, 4 * NUM_LIMB_BITS);
85 num_last_limb_bits = maximum_bitlength - (3 * NUM_LIMB_BITS);
86 }
87 // We create the high limb values similar to the low limb ones above
88 const uint64_t num_high_limb_bits = NUM_LIMB_BITS + num_last_limb_bits;
89 if (!high_bits_in.is_constant()) {
90 // Decompose the high bits into 2 limbs and range constrain them.
91 const auto limb_witnesses = context->decompose_non_native_field_double_width_limb(
92 high_bits_in.get_normalized_witness_index(), static_cast<size_t>(num_high_limb_bits));
93 limb_2.witness_index = limb_witnesses[0];
94 limb_3.witness_index = limb_witnesses[1];
95 field_t<Builder>::evaluate_linear_identity(high_bits_in, -limb_2, -limb_3 * shift_1, field_t<Builder>(0));
96 } else {
97 uint256_t slice_2 = uint256_t(high_bits_in.additive_constant).slice(0, NUM_LIMB_BITS);
98 uint256_t slice_3 = uint256_t(high_bits_in.additive_constant).slice(NUM_LIMB_BITS, num_high_limb_bits);
99 limb_2 = field_t(context, bb::fr(slice_2));
100 limb_3 = field_t(context, bb::fr(slice_3));
101 }
102 binary_basis_limbs[0] = Limb(limb_0, DEFAULT_MAXIMUM_LIMB);
103 binary_basis_limbs[1] = Limb(limb_1, DEFAULT_MAXIMUM_LIMB);
104 binary_basis_limbs[2] = Limb(limb_2, DEFAULT_MAXIMUM_LIMB);
105 if (maximum_bitlength > 0) {
106 uint256_t max_limb_value = (uint256_t(1) << (maximum_bitlength - (3 * NUM_LIMB_BITS))) - 1;
107 binary_basis_limbs[3] = Limb(limb_3, max_limb_value);
108 } else {
109 binary_basis_limbs[3] =
110 Limb(limb_3, can_overflow ? DEFAULT_MAXIMUM_LIMB : DEFAULT_MAXIMUM_MOST_SIGNIFICANT_LIMB);
111 }
112 prime_basis_limb = low_bits_in + (high_bits_in * shift_2);
113 auto new_tag = OriginTag(low_bits_in.tag, high_bits_in.tag);
114 set_origin_tag(new_tag);
116
117template <typename Builder, typename T>
119 : context(other.context)
120 , binary_basis_limbs{ other.binary_basis_limbs[0],
121 other.binary_basis_limbs[1],
122 other.binary_basis_limbs[2],
123 other.binary_basis_limbs[3] }
124 , prime_basis_limb(other.prime_basis_limb)
125{}
126
127template <typename Builder, typename T>
129 : context(other.context)
130 , binary_basis_limbs{ other.binary_basis_limbs[0],
131 other.binary_basis_limbs[1],
132 other.binary_basis_limbs[2],
133 other.binary_basis_limbs[3] }
134 , prime_basis_limb(other.prime_basis_limb)
135{}
136
137template <typename Builder, typename T>
139 const uint512_t& value,
140 const bool can_overflow,
141 const size_t maximum_bitlength)
142{
143 ASSERT((can_overflow == true && maximum_bitlength == 0) ||
144 (can_overflow == false && (maximum_bitlength == 0 || maximum_bitlength > (3 * NUM_LIMB_BITS))));
146 limbs[0] = value.slice(0, NUM_LIMB_BITS).lo;
147 limbs[1] = value.slice(NUM_LIMB_BITS, NUM_LIMB_BITS * 2).lo;
148 limbs[2] = value.slice(NUM_LIMB_BITS * 2, NUM_LIMB_BITS * 3).lo;
149 limbs[3] = value.slice(NUM_LIMB_BITS * 3, NUM_LIMB_BITS * 4).lo;
150
151 field_t<Builder> limb_0(ctx);
152 field_t<Builder> limb_1(ctx);
153 field_t<Builder> limb_2(ctx);
154 field_t<Builder> limb_3(ctx);
155 field_t<Builder> prime_limb(ctx);
156 limb_0.witness_index = ctx->add_variable(bb::fr(limbs[0]));
157 limb_1.witness_index = ctx->add_variable(bb::fr(limbs[1]));
158 limb_2.witness_index = ctx->add_variable(bb::fr(limbs[2]));
159 limb_3.witness_index = ctx->add_variable(bb::fr(limbs[3]));
160 prime_limb.witness_index = ctx->add_variable(limb_0.get_value() + limb_1.get_value() * shift_1 +
161 limb_2.get_value() * shift_2 + limb_3.get_value() * shift_3);
162 // evaluate prime basis limb with addition gate that taps into the 4th wire in the next gate
163 ctx->create_big_add_gate({ limb_1.get_normalized_witness_index(),
166 prime_limb.get_normalized_witness_index(),
167 shift_1,
168 shift_2,
169 shift_3,
170 -1,
171 0 },
172 true);
173 // NOTE(https://github.com/AztecProtocol/barretenberg/issues/879): Optimisation opportunity to use a single gate
174 // (and remove dummy gate). Currently, dummy gate is necessary for preceeding big add gate as these gates fall in
175 // the arithmetic block. More details on the linked Github issue.
176 ctx->create_unconstrained_gate(ctx->blocks.arithmetic,
177 ctx->zero_idx(),
178 ctx->zero_idx(),
179 ctx->zero_idx(),
181
182 uint64_t num_last_limb_bits = (can_overflow) ? NUM_LIMB_BITS : NUM_LAST_LIMB_BITS;
183
184 bigfield result(ctx);
185 result.binary_basis_limbs[0] = Limb(limb_0, DEFAULT_MAXIMUM_LIMB);
186 result.binary_basis_limbs[1] = Limb(limb_1, DEFAULT_MAXIMUM_LIMB);
187 result.binary_basis_limbs[2] = Limb(limb_2, DEFAULT_MAXIMUM_LIMB);
188 result.binary_basis_limbs[3] =
189 Limb(limb_3, can_overflow ? DEFAULT_MAXIMUM_LIMB : DEFAULT_MAXIMUM_MOST_SIGNIFICANT_LIMB);
190
191 // if maximum_bitlength is set, this supercedes can_overflow
192 if (maximum_bitlength > 0) {
193 BB_ASSERT_GT(maximum_bitlength, 3 * NUM_LIMB_BITS);
194 num_last_limb_bits = maximum_bitlength - (3 * NUM_LIMB_BITS);
195 uint256_t max_limb_value = (uint256_t(1) << num_last_limb_bits) - 1;
196 result.binary_basis_limbs[3].maximum_value = max_limb_value;
197 }
198 result.prime_basis_limb = prime_limb;
199 ctx->range_constrain_two_limbs(limb_0.get_normalized_witness_index(),
201 static_cast<size_t>(NUM_LIMB_BITS),
202 static_cast<size_t>(NUM_LIMB_BITS),
203 "bigfield::create_from_u512_as_witness: limb 0 or 1 too large");
204 ctx->range_constrain_two_limbs(limb_2.get_normalized_witness_index(),
206 static_cast<size_t>(NUM_LIMB_BITS),
207 static_cast<size_t>(num_last_limb_bits),
208 "bigfield::create_from_u512_as_witness: limb 2 or 3 too large");
209
210 // Mark the element as coming out of nowhere
211 result.set_free_witness_tag();
212
213 return result;
214}
215
216template <typename Builder, typename T> bigfield<Builder, T>::bigfield(const byte_array<Builder>& bytes)
217{
218 BB_ASSERT_EQ(bytes.size(), 32U); // we treat input as a 256-bit big integer
219 const auto split_byte_into_nibbles = [](Builder* ctx, const field_t<Builder>& split_byte) {
220 const uint64_t byte_val = uint256_t(split_byte.get_value()).data[0];
221 const uint64_t lo_nibble_val = byte_val & 15ULL;
222 const uint64_t hi_nibble_val = byte_val >> 4;
223
224 const field_t<Builder> lo_nibble(witness_t<Builder>(ctx, lo_nibble_val));
225 const field_t<Builder> hi_nibble(witness_t<Builder>(ctx, hi_nibble_val));
226 lo_nibble.create_range_constraint(4, "bigfield: lo_nibble too large");
227 hi_nibble.create_range_constraint(4, "bigfield: hi_nibble too large");
228
229 const uint256_t hi_nibble_shift = uint256_t(1) << 4;
230 const field_t<Builder> sum = lo_nibble + (hi_nibble * hi_nibble_shift);
231 sum.assert_equal(split_byte);
232 lo_nibble.set_origin_tag(split_byte.tag);
233 hi_nibble.set_origin_tag(split_byte.tag);
234 return std::make_pair(lo_nibble, hi_nibble);
235 };
236
237 const auto reconstruct_two_limbs = [&split_byte_into_nibbles](Builder* ctx,
238 const field_t<Builder>& hi_bytes,
239 const field_t<Builder>& lo_bytes,
240 const field_t<Builder>& split_byte) {
241 const auto [lo_nibble, hi_nibble] = split_byte_into_nibbles(ctx, split_byte);
242
243 const uint256_t hi_bytes_shift = uint256_t(1) << 4;
244 const uint256_t lo_nibble_shift = uint256_t(1) << 64;
245 field_t<Builder> hi_limb = hi_nibble + hi_bytes * hi_bytes_shift;
246 field_t<Builder> lo_limb = lo_bytes + lo_nibble * lo_nibble_shift;
247 return std::make_pair(lo_limb, hi_limb);
248 };
249 Builder* ctx = bytes.get_context();
250
251 // The input bytes are interpreted as a 256-bit integer, which is split into 4 limbs as follows:
252 //
253 // overlap byte overlap byte
254 // ↓ ↓
255 // [ b31 b30 ... b25 b24 | b23 | b22 b21 ... b16 b15 | b14 b13 ... b8 b7 | b06 | b5 b4 ... b1 b0 ]
256 // |--------------------------|--------------------------|-----------------------|----------------------|
257 // ↑ 68 bits ↑ 68 bits ↑ 68 bits ↑ 52 bits ↑
258 // [ limb l0 | limb l1 | limb l2 | limb l3 ]
259 //
260 const field_t<Builder> hi_8_bytes(bytes.slice(0, 6));
261 const field_t<Builder> mid_split_byte(bytes.slice(6, 1));
262 const field_t<Builder> mid_8_bytes(bytes.slice(7, 8));
263
264 const field_t<Builder> lo_8_bytes(bytes.slice(15, 8));
265 const field_t<Builder> lo_split_byte(bytes.slice(23, 1));
266 const field_t<Builder> lolo_8_bytes(bytes.slice(24, 8));
268 const auto [limb0, limb1] = reconstruct_two_limbs(ctx, lo_8_bytes, lolo_8_bytes, lo_split_byte);
269 const auto [limb2, limb3] = reconstruct_two_limbs(ctx, hi_8_bytes, mid_8_bytes, mid_split_byte);
271 const auto res = bigfield::unsafe_construct_from_limbs(limb0, limb1, limb2, limb3, true);
272
273 const auto num_last_limb_bits = 256 - (NUM_LIMB_BITS * 3);
274 res.binary_basis_limbs[3].maximum_value = (uint64_t(1) << num_last_limb_bits);
275 *this = res;
276 set_origin_tag(bytes.get_origin_tag());
277}
278
279template <typename Builder, typename T> bigfield<Builder, T>& bigfield<Builder, T>::operator=(const bigfield& other)
280{
281 if (this == &other) {
282 return *this;
283 }
284 context = other.context;
285 binary_basis_limbs[0] = other.binary_basis_limbs[0];
286 binary_basis_limbs[1] = other.binary_basis_limbs[1];
287 binary_basis_limbs[2] = other.binary_basis_limbs[2];
288 binary_basis_limbs[3] = other.binary_basis_limbs[3];
289 prime_basis_limb = other.prime_basis_limb;
290 return *this;
292
293template <typename Builder, typename T> bigfield<Builder, T>& bigfield<Builder, T>::operator=(bigfield&& other) noexcept
294{
295 context = other.context;
296 binary_basis_limbs[0] = other.binary_basis_limbs[0];
297 binary_basis_limbs[1] = other.binary_basis_limbs[1];
298 binary_basis_limbs[2] = other.binary_basis_limbs[2];
299 binary_basis_limbs[3] = other.binary_basis_limbs[3];
300 prime_basis_limb = other.prime_basis_limb;
301 return *this;
302}
303
304template <typename Builder, typename T> uint512_t bigfield<Builder, T>::get_value() const
305{
306 uint512_t t0 = uint256_t(binary_basis_limbs[0].element.get_value());
307 uint512_t t1 = uint256_t(binary_basis_limbs[1].element.get_value());
308 uint512_t t2 = uint256_t(binary_basis_limbs[2].element.get_value());
309 uint512_t t3 = uint256_t(binary_basis_limbs[3].element.get_value());
310 return t0 + (t1 << (NUM_LIMB_BITS)) + (t2 << (2 * NUM_LIMB_BITS)) + (t3 << (3 * NUM_LIMB_BITS));
311}
312
313template <typename Builder, typename T> uint512_t bigfield<Builder, T>::get_maximum_value() const
314{
315 uint512_t t0 = uint512_t(binary_basis_limbs[0].maximum_value);
316 uint512_t t1 = uint512_t(binary_basis_limbs[1].maximum_value) << NUM_LIMB_BITS;
317 uint512_t t2 = uint512_t(binary_basis_limbs[2].maximum_value) << (NUM_LIMB_BITS * 2);
318 uint512_t t3 = uint512_t(binary_basis_limbs[3].maximum_value) << (NUM_LIMB_BITS * 3);
319 return t0 + t1 + t2 + t3;
320}
321
322template <typename Builder, typename T>
324 const uint256_t& other_maximum_value) const
325{
326 reduction_check();
327 BB_ASSERT_LTE(uint512_t(other_maximum_value) + uint512_t(binary_basis_limbs[0].maximum_value),
328 uint512_t(get_maximum_unreduced_limb_value()));
329 // needed cause a constant doesn't have a valid context
330 Builder* ctx = context ? context : other.context;
331
332 if (is_constant() && other.is_constant()) {
333 return bigfield(ctx, uint256_t((get_value() + uint256_t(other.get_value())) % modulus_u512));
334 }
335
336 bigfield result;
337 // If the original value is constant, we have to reinitialize the higher limbs to be witnesses when adding a witness
338 if (is_constant()) {
339 auto context = other.context;
340 for (size_t i = 1; i < NUM_LIMBS; i++) {
341 // Construct a witness element from the original constant limb
342 result.binary_basis_limbs[i] =
343 Limb(field_t<Builder>::from_witness(context, binary_basis_limbs[i].element.get_value()),
344 binary_basis_limbs[i].maximum_value);
345 // Ensure it is fixed
346 result.binary_basis_limbs[i].element.fix_witness();
347 result.context = ctx;
348 }
349 } else {
350
351 // if this element is a witness, then all limbs will be witnesses
352 result = *this;
353 }
354 result.binary_basis_limbs[0].maximum_value = binary_basis_limbs[0].maximum_value + other_maximum_value;
355
356 result.binary_basis_limbs[0].element = binary_basis_limbs[0].element + other;
357 result.prime_basis_limb = prime_basis_limb + other;
358 result.set_origin_tag(OriginTag(get_origin_tag(), other.tag));
359 return result;
360}
361
362template <typename Builder, typename T>
364{
365 reduction_check();
366 other.reduction_check();
367 // needed cause a constant doesn't have a valid context
368 Builder* ctx = context ? context : other.context;
369
370 if (is_constant() && other.is_constant()) {
371 auto result = bigfield(ctx, uint256_t((get_value() + other.get_value()) % modulus_u512));
372 result.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag()));
373 return result;
374 }
375 bigfield result(ctx);
376 result.binary_basis_limbs[0].maximum_value =
377 binary_basis_limbs[0].maximum_value + other.binary_basis_limbs[0].maximum_value;
378 result.binary_basis_limbs[1].maximum_value =
379 binary_basis_limbs[1].maximum_value + other.binary_basis_limbs[1].maximum_value;
380 result.binary_basis_limbs[2].maximum_value =
381 binary_basis_limbs[2].maximum_value + other.binary_basis_limbs[2].maximum_value;
382 result.binary_basis_limbs[3].maximum_value =
383 binary_basis_limbs[3].maximum_value + other.binary_basis_limbs[3].maximum_value;
384
385 // If both the elements are witnesses, we use an optimized addition trick that uses 4 gates instead of 5.
386 //
387 // Naively, we would need 5 gates to add two bigfield elements: 4 gates to add the binary basis limbs and
388 // 1 gate to add the prime basis limbs.
389 //
390 // In the optimized version, we fit 15 witnesses into 4 gates (4 + 4 + 4 + 3 = 15), and we add the prime basis limbs
391 // and one of the binary basis limbs in the first gate.
392 // gate 1: z.limb_0 = x.limb_0 + y.limb_0 && z.prime_limb = x.prime_limb + y.prime_limb
393 // gate 2: z.limb_1 = x.limb_1 + y.limb_1
394 // gate 3: z.limb_2 = x.limb_2 + y.limb_2
395 // gate 4: z.limb_3 = x.limb_3 + y.limb_3
396 //
397 bool both_witness = !is_constant() && !other.is_constant();
398 bool both_prime_limb_multiplicative_constant_one =
399 (prime_basis_limb.multiplicative_constant == 1 && other.prime_basis_limb.multiplicative_constant == 1);
400 if (both_prime_limb_multiplicative_constant_one && both_witness) {
401 bool limbconst =
402 is_constant() || other.is_constant() ||
403 (prime_basis_limb.get_witness_index() ==
404 other.prime_basis_limb.get_witness_index()); // We are comparing if the bigfield elements are exactly the
405 // same object, so we compare the unnormalized witness indices
406 if (!limbconst) {
407 // Extract witness indices and multiplicative constants for binary basis limbs
408 std::array<std::pair<uint32_t, bb::fr>, NUM_LIMBS> x_scaled;
409 std::array<std::pair<uint32_t, bb::fr>, NUM_LIMBS> y_scaled;
411
412 for (size_t i = 0; i < NUM_LIMBS; ++i) {
413 const auto& x_limb = binary_basis_limbs[i].element;
414 const auto& y_limb = other.binary_basis_limbs[i].element;
415
416 x_scaled[i] = { x_limb.witness_index, x_limb.multiplicative_constant };
417 y_scaled[i] = { y_limb.witness_index, y_limb.multiplicative_constant };
418 c_adds[i] = bb::fr(x_limb.additive_constant + y_limb.additive_constant);
420
421 // Extract witness indices for prime basis limb
422 uint32_t x_prime(prime_basis_limb.witness_index);
423 uint32_t y_prime(other.prime_basis_limb.witness_index);
424 bb::fr c_prime(prime_basis_limb.additive_constant + other.prime_basis_limb.additive_constant);
425
426 const auto output_witnesses =
427 ctx->evaluate_non_native_field_addition({ x_scaled[0], y_scaled[0], c_adds[0] },
428 { x_scaled[1], y_scaled[1], c_adds[1] },
429 { x_scaled[2], y_scaled[2], c_adds[2] },
430 { x_scaled[3], y_scaled[3], c_adds[3] },
431 { x_prime, y_prime, c_prime });
433 result.binary_basis_limbs[0].element = field_t<Builder>::from_witness_index(ctx, output_witnesses[0]);
434 result.binary_basis_limbs[1].element = field_t<Builder>::from_witness_index(ctx, output_witnesses[1]);
435 result.binary_basis_limbs[2].element = field_t<Builder>::from_witness_index(ctx, output_witnesses[2]);
436 result.binary_basis_limbs[3].element = field_t<Builder>::from_witness_index(ctx, output_witnesses[3]);
437 result.prime_basis_limb = field_t<Builder>::from_witness_index(ctx, output_witnesses[4]);
438 result.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag()));
439 return result;
440 }
441 }
442
443 // If one of the elements is a constant or its prime limb does not have a multiplicative constant of 1, we
444 // use the standard addition method. This will not use additional gates because field addition with one constant
445 // does not require any additional gates.
446 result.binary_basis_limbs[0].element = binary_basis_limbs[0].element + other.binary_basis_limbs[0].element;
447 result.binary_basis_limbs[1].element = binary_basis_limbs[1].element + other.binary_basis_limbs[1].element;
448 result.binary_basis_limbs[2].element = binary_basis_limbs[2].element + other.binary_basis_limbs[2].element;
449 result.binary_basis_limbs[3].element = binary_basis_limbs[3].element + other.binary_basis_limbs[3].element;
450 result.prime_basis_limb = prime_basis_limb + other.prime_basis_limb;
451
452 result.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag()));
453 return result;
454}
455
456template <typename Builder, typename T>
458{
459 reduction_check();
460 add_a.reduction_check();
461 add_b.reduction_check();
463 Builder* ctx = (context == nullptr) ? (add_a.context == nullptr ? add_b.context : add_a.context) : context;
464
465 if (is_constant() && add_a.is_constant() && add_b.is_constant()) {
466 auto result = bigfield(ctx, uint256_t((get_value() + add_a.get_value() + add_b.get_value()) % modulus_u512));
467 result.set_origin_tag(OriginTag(this->get_origin_tag(), add_a.get_origin_tag(), add_b.get_origin_tag()));
468 return result;
469 }
470
471 bigfield result(ctx);
472 result.binary_basis_limbs[0].maximum_value = binary_basis_limbs[0].maximum_value +
473 add_a.binary_basis_limbs[0].maximum_value +
474 add_b.binary_basis_limbs[0].maximum_value;
475 result.binary_basis_limbs[1].maximum_value = binary_basis_limbs[1].maximum_value +
476 add_a.binary_basis_limbs[1].maximum_value +
477 add_b.binary_basis_limbs[1].maximum_value;
478 result.binary_basis_limbs[2].maximum_value = binary_basis_limbs[2].maximum_value +
479 add_a.binary_basis_limbs[2].maximum_value +
480 add_b.binary_basis_limbs[2].maximum_value;
481 result.binary_basis_limbs[3].maximum_value = binary_basis_limbs[3].maximum_value +
482 add_a.binary_basis_limbs[3].maximum_value +
483 add_b.binary_basis_limbs[3].maximum_value;
484
485 result.binary_basis_limbs[0].element =
486 binary_basis_limbs[0].element.add_two(add_a.binary_basis_limbs[0].element, add_b.binary_basis_limbs[0].element);
487 result.binary_basis_limbs[1].element =
488 binary_basis_limbs[1].element.add_two(add_a.binary_basis_limbs[1].element, add_b.binary_basis_limbs[1].element);
489 result.binary_basis_limbs[2].element =
490 binary_basis_limbs[2].element.add_two(add_a.binary_basis_limbs[2].element, add_b.binary_basis_limbs[2].element);
491 result.binary_basis_limbs[3].element =
492 binary_basis_limbs[3].element.add_two(add_a.binary_basis_limbs[3].element, add_b.binary_basis_limbs[3].element);
493 result.prime_basis_limb = prime_basis_limb.add_two(add_a.prime_basis_limb, add_b.prime_basis_limb);
494 result.set_origin_tag(OriginTag(this->get_origin_tag(), add_a.get_origin_tag(), add_b.get_origin_tag()));
495 return result;
496}
497
498template <typename Builder, typename T>
500{
501 Builder* ctx = context ? context : other.context;
502 reduction_check();
503 other.reduction_check();
504
505 if (is_constant() && other.is_constant()) {
506 uint512_t left = get_value() % modulus_u512;
507 uint512_t right = other.get_value() % modulus_u512;
508 uint512_t out = (left + modulus_u512 - right) % modulus_u512;
509
510 auto result = bigfield(ctx, uint256_t(out.lo));
511 result.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag()));
512 return result;
513 }
514
515 if (other.is_constant()) {
516 uint512_t right = other.get_value() % modulus_u512;
517 uint512_t neg_right = (modulus_u512 - right) % modulus_u512;
518 bigfield summand = bigfield(ctx, uint256_t(neg_right.lo));
519 summand.set_origin_tag(OriginTag(other.get_origin_tag()));
520 return operator+(summand);
521 }
522
540 bigfield result(ctx);
541
550 uint256_t limb_0_maximum_value = other.binary_basis_limbs[0].maximum_value;
551
552 // Compute maximum shift factor for limb_0
553 uint64_t limb_0_borrow_shift = std::max(limb_0_maximum_value.get_msb() + 1, NUM_LIMB_BITS);
554
555 // Compute the maximum negative value of limb_1, including the bits limb_0 may need to borrow
556 uint256_t limb_1_maximum_value =
557 other.binary_basis_limbs[1].maximum_value + (uint256_t(1) << (limb_0_borrow_shift - NUM_LIMB_BITS));
558
559 // repeat the above for the remaining limbs
560 uint64_t limb_1_borrow_shift = std::max(limb_1_maximum_value.get_msb() + 1, NUM_LIMB_BITS);
561 uint256_t limb_2_maximum_value =
562 other.binary_basis_limbs[2].maximum_value + (uint256_t(1) << (limb_1_borrow_shift - NUM_LIMB_BITS));
563 uint64_t limb_2_borrow_shift = std::max(limb_2_maximum_value.get_msb() + 1, NUM_LIMB_BITS);
564
565 uint256_t limb_3_maximum_value =
566 other.binary_basis_limbs[3].maximum_value + (uint256_t(1) << (limb_2_borrow_shift - NUM_LIMB_BITS));
567
576 uint1024_t constant_to_add_factor =
577 (uint1024_t(limb_3_maximum_value) << (NUM_LIMB_BITS * 3)) / uint1024_t(modulus_u512) + uint1024_t(1);
578 uint512_t constant_to_add = constant_to_add_factor.lo * modulus_u512;
579
604 uint256_t t0(uint256_t(1) << limb_0_borrow_shift);
605 uint256_t t1((uint256_t(1) << limb_1_borrow_shift) - (uint256_t(1) << (limb_0_borrow_shift - NUM_LIMB_BITS)));
606 uint256_t t2((uint256_t(1) << limb_2_borrow_shift) - (uint256_t(1) << (limb_1_borrow_shift - NUM_LIMB_BITS)));
607 uint256_t t3(uint256_t(1) << (limb_2_borrow_shift - NUM_LIMB_BITS));
608
613 uint256_t to_add_0 = uint256_t(constant_to_add.slice(0, NUM_LIMB_BITS)) + t0;
614 uint256_t to_add_1 = uint256_t(constant_to_add.slice(NUM_LIMB_BITS, NUM_LIMB_BITS * 2)) + t1;
615 uint256_t to_add_2 = uint256_t(constant_to_add.slice(NUM_LIMB_BITS * 2, NUM_LIMB_BITS * 3)) + t2;
616 uint256_t to_add_3 = uint256_t(constant_to_add.slice(NUM_LIMB_BITS * 3, NUM_LIMB_BITS * 4)) - t3;
617
621 result.binary_basis_limbs[0].maximum_value = binary_basis_limbs[0].maximum_value + to_add_0;
622 result.binary_basis_limbs[1].maximum_value = binary_basis_limbs[1].maximum_value + to_add_1;
623 result.binary_basis_limbs[2].maximum_value = binary_basis_limbs[2].maximum_value + to_add_2;
624 result.binary_basis_limbs[3].maximum_value = binary_basis_limbs[3].maximum_value + to_add_3;
625
629 result.binary_basis_limbs[0].element = binary_basis_limbs[0].element + bb::fr(to_add_0);
630 result.binary_basis_limbs[1].element = binary_basis_limbs[1].element + bb::fr(to_add_1);
631 result.binary_basis_limbs[2].element = binary_basis_limbs[2].element + bb::fr(to_add_2);
632 result.binary_basis_limbs[3].element = binary_basis_limbs[3].element + bb::fr(to_add_3);
633
634 bool both_witness = !is_constant() && !other.is_constant();
635 bool both_prime_limb_multiplicative_constant_one =
636 (prime_basis_limb.multiplicative_constant == 1 && other.prime_basis_limb.multiplicative_constant == 1);
637 if (both_prime_limb_multiplicative_constant_one && both_witness) {
638 bool limbconst =
639 is_constant() || other.is_constant() ||
640 (prime_basis_limb.get_witness_index() ==
641 other.prime_basis_limb.get_witness_index()); // We are checking if `this` and `other` are identical, so we
642 // need to compare the actual indices, not normalized ones
643
644 if (!limbconst) {
645 // Extract witness indices and multiplicative constants for binary basis limbs
646 std::array<std::pair<uint32_t, bb::fr>, NUM_LIMBS> x_scaled;
647 std::array<std::pair<uint32_t, bb::fr>, NUM_LIMBS> y_scaled;
649
650 for (size_t i = 0; i < NUM_LIMBS; ++i) {
651 const auto& x_limb = result.binary_basis_limbs[i].element;
652 const auto& y_limb = other.binary_basis_limbs[i].element;
653
654 x_scaled[i] = { x_limb.witness_index, x_limb.multiplicative_constant };
655 y_scaled[i] = { y_limb.witness_index, y_limb.multiplicative_constant };
656 c_diffs[i] = bb::fr(x_limb.additive_constant - y_limb.additive_constant);
657 }
658
659 // Extract witness indices for prime basis limb
660 uint32_t x_prime(prime_basis_limb.witness_index);
661 uint32_t y_prime(other.prime_basis_limb.witness_index);
662 bb::fr c_prime(prime_basis_limb.additive_constant - other.prime_basis_limb.additive_constant);
663 uint512_t constant_to_add_mod_native = (constant_to_add) % prime_basis.modulus;
664 c_prime += bb::fr(constant_to_add_mod_native.lo);
665
666 const auto output_witnesses =
667 ctx->evaluate_non_native_field_subtraction({ x_scaled[0], y_scaled[0], c_diffs[0] },
668 { x_scaled[1], y_scaled[1], c_diffs[1] },
669 { x_scaled[2], y_scaled[2], c_diffs[2] },
670 { x_scaled[3], y_scaled[3], c_diffs[3] },
671 { x_prime, y_prime, c_prime });
672
673 result.binary_basis_limbs[0].element = field_t<Builder>::from_witness_index(ctx, output_witnesses[0]);
674 result.binary_basis_limbs[1].element = field_t<Builder>::from_witness_index(ctx, output_witnesses[1]);
675 result.binary_basis_limbs[2].element = field_t<Builder>::from_witness_index(ctx, output_witnesses[2]);
676 result.binary_basis_limbs[3].element = field_t<Builder>::from_witness_index(ctx, output_witnesses[3]);
677 result.prime_basis_limb = field_t<Builder>::from_witness_index(ctx, output_witnesses[4]);
678
679 result.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag()));
680 return result;
681 }
682 }
683
684 result.binary_basis_limbs[0].element -= other.binary_basis_limbs[0].element;
685 result.binary_basis_limbs[1].element -= other.binary_basis_limbs[1].element;
686 result.binary_basis_limbs[2].element -= other.binary_basis_limbs[2].element;
687 result.binary_basis_limbs[3].element -= other.binary_basis_limbs[3].element;
688
692 uint512_t constant_to_add_mod_native = (constant_to_add) % prime_basis.modulus;
693 field_t prime_basis_to_add(ctx, bb::fr(constant_to_add_mod_native.lo));
694 result.prime_basis_limb = prime_basis_limb + prime_basis_to_add;
695 result.prime_basis_limb -= other.prime_basis_limb;
696 return result;
697}
698
699template <typename Builder, typename T>
701{
702 // First we do basic reduction checks of individual elements
703 reduction_check();
704 other.reduction_check();
705 Builder* ctx = context ? context : other.context;
706 // Now we can actually compute the quotient and remainder values
707 const auto [quotient_value, remainder_value] = compute_quotient_remainder_values(*this, other, {});
708 bigfield remainder;
709 bigfield quotient;
710 // If operands are constant, define result as a constant value and return
711 if (is_constant() && other.is_constant()) {
712 remainder = bigfield(ctx, uint256_t(remainder_value.lo));
713 remainder.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag()));
714 return remainder;
715 } else {
716 // when writing a*b = q*p + r we wish to enforce r<2^s for smallest s such that p<2^s
717 // hence the second constructor call is with can_overflow=false. This will allow using r in more additions
718 // mod 2^t without needing to apply the mod, where t=4*NUM_LIMB_BITS
719
720 // Check if the product overflows CRT or the quotient can't be contained in a range proof and reduce
721 // accordingly
722 auto [reduction_required, num_quotient_bits] =
723 get_quotient_reduction_info({ get_maximum_value() }, { other.get_maximum_value() }, {});
724 if (reduction_required) {
725 if (get_maximum_value() > other.get_maximum_value()) {
726 self_reduce();
727 } else {
728 other.self_reduce();
729 }
730 return (*this).operator*(other);
731 }
732 quotient = create_from_u512_as_witness(ctx, quotient_value, false, num_quotient_bits);
733 remainder = create_from_u512_as_witness(ctx, remainder_value);
734 };
735
736 // Call `evaluate_multiply_add` to validate the correctness of our computed quotient and remainder
737 unsafe_evaluate_multiply_add(*this, other, {}, quotient, { remainder });
738
739 remainder.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag()));
740 return remainder;
741}
742
743template <typename Builder, typename T>
745{
746
747 return internal_div({ *this }, other, true);
748}
757template <typename Builder, typename T>
759{
760 BB_ASSERT_GT(terms.size(), 0U);
761
762 if (terms.size() == 1) {
763 return terms[0];
764 }
765
766 bigfield acc = terms[0];
767 for (size_t i = 1; i < (terms.size() + 1) / 2; i++) {
768 acc = acc.add_two(terms[2 * i - 1], terms[2 * i]);
769 }
770 if ((terms.size() & 1) == 0) {
771 acc += terms[terms.size() - 1];
772 }
773 return acc;
774}
775
785template <typename Builder, typename T>
787 const bigfield& denominator,
788 bool check_for_zero)
789{
790 BB_ASSERT_LT(numerators.size(), MAXIMUM_SUMMAND_COUNT);
791 if (numerators.empty()) {
792 if (check_for_zero) {
793 // We do not want to trigger division by zero in the empty sum case
794 denominator.assert_is_not_equal(zero());
795 }
796 return bigfield<Builder, T>(denominator.get_context(), uint256_t(0));
797 }
798
799 denominator.reduction_check();
800 Builder* ctx = denominator.context;
801 uint512_t numerator_values(0);
802 bool numerator_constant = true;
803 OriginTag tag = denominator.get_origin_tag();
804 for (const auto& numerator_element : numerators) {
805 ctx = (ctx == nullptr) ? numerator_element.get_context() : ctx;
806 numerator_element.reduction_check();
807 numerator_values += numerator_element.get_value();
808 numerator_constant = numerator_constant && (numerator_element.is_constant());
809 tag = OriginTag(tag, numerator_element.get_origin_tag());
810 }
811
812 // a / b = c
813 // => c * b = a mod p
814 const uint1024_t left = uint1024_t(numerator_values);
815 const uint1024_t right = uint1024_t(denominator.get_value());
816 const uint1024_t modulus(target_basis.modulus);
817 // We don't want to trigger the uint assert
818 uint512_t inverse_value(0);
819 if (right.lo != uint512_t(0)) {
820 inverse_value = right.lo.invmod(target_basis.modulus).lo;
821 }
822 uint1024_t inverse_1024(inverse_value);
823 inverse_value = ((left * inverse_1024) % modulus).lo;
824
825 const uint1024_t quotient_1024 =
826 (uint1024_t(inverse_value) * right + unreduced_zero().get_value() - left) / modulus;
827 const uint512_t quotient_value = quotient_1024.lo;
828
829 bigfield inverse;
830 bigfield quotient;
831 if (numerator_constant && denominator.is_constant()) {
832 if (check_for_zero) {
833 // We want to avoid division by zero in the constant case
834 ASSERT(denominator.get_value() != uint512_t(0), "bigfield: division by zero in constant division");
835 }
836 inverse = bigfield(ctx, uint256_t(inverse_value));
837 inverse.set_origin_tag(tag);
838 return inverse;
839 } else {
840 // NOTE(https://github.com/AztecProtocol/aztec-packages/issues/15385): We can do a simplification when the
841 // denominator is constant. We can compute its inverse out-of-circuit and then multiply it with the numerator.
842 // We only add the check if the result is non-constant
843 std::vector<uint1024_t> numerator_max;
844 for (const auto& n : numerators) {
845 numerator_max.push_back(n.get_maximum_value());
846 }
847
848 auto [reduction_required, num_quotient_bits] =
849 get_quotient_reduction_info({ static_cast<uint512_t>(DEFAULT_MAXIMUM_REMAINDER) },
850 { denominator.get_maximum_value() },
851 { unreduced_zero() },
852 numerator_max);
853 if (reduction_required) {
854
855 denominator.self_reduce();
856 return internal_div(numerators, denominator, check_for_zero);
857 }
858 // We do this after the quotient check, since this creates gates and we don't want to do this twice
859 if (check_for_zero) {
860 denominator.assert_is_not_equal(zero());
861 }
862
863 quotient = create_from_u512_as_witness(ctx, quotient_value, false, num_quotient_bits);
864 inverse = create_from_u512_as_witness(ctx, inverse_value);
865 }
866
867 inverse.set_origin_tag(tag);
868 unsafe_evaluate_multiply_add(denominator, inverse, { unreduced_zero() }, quotient, numerators);
869 return inverse;
870}
871
878template <typename Builder, typename T>
880 const bigfield& denominator)
881{
882 return internal_div(numerators, denominator, false);
883}
884
885template <typename Builder, typename T>
887{
888 return internal_div({ *this }, denominator, false);
889}
890
896template <typename Builder, typename T>
898 const bigfield& denominator)
899{
900 return internal_div(numerators, denominator, true);
901}
902
903template <typename Builder, typename T> bigfield<Builder, T> bigfield<Builder, T>::sqr() const
904{
905 reduction_check();
906 Builder* ctx = context;
907
908 const auto [quotient_value, remainder_value] = compute_quotient_remainder_values(*this, *this, {});
909
910 bigfield remainder;
911 bigfield quotient;
912 if (is_constant()) {
913 remainder = bigfield(ctx, uint256_t(remainder_value.lo));
914 return remainder;
915 } else {
916
917 auto [reduction_required, num_quotient_bits] = get_quotient_reduction_info(
918 { get_maximum_value() }, { get_maximum_value() }, {}, { DEFAULT_MAXIMUM_REMAINDER });
919 if (reduction_required) {
920 self_reduce();
921 return sqr();
922 }
923
924 quotient = create_from_u512_as_witness(ctx, quotient_value, false, num_quotient_bits);
925 remainder = create_from_u512_as_witness(ctx, remainder_value);
926 };
927
928 unsafe_evaluate_square_add(*this, {}, quotient, remainder);
929 remainder.set_origin_tag(get_origin_tag());
930 return remainder;
931}
932
933template <typename Builder, typename T>
935{
936 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
937 reduction_check();
938
939 Builder* ctx = context;
940
942 bool add_constant = true;
943 for (const auto& add_element : to_add) {
944 add_element.reduction_check();
945 add_values += add_element.get_value();
946 add_constant = add_constant && (add_element.is_constant());
947 }
948
949 const uint1024_t left(get_value());
950 const uint1024_t right(get_value());
951 const uint1024_t add_right(add_values);
952 const uint1024_t modulus(target_basis.modulus);
953
954 bigfield remainder;
955 bigfield quotient;
956 if (is_constant()) {
957 if (add_constant) {
958
959 const auto [quotient_1024, remainder_1024] = (left * right + add_right).divmod(modulus);
960 remainder = bigfield(ctx, uint256_t(remainder_1024.lo.lo));
961 // Merge tags
962 OriginTag new_tag = get_origin_tag();
963 for (auto& element : to_add) {
964 new_tag = OriginTag(new_tag, element.get_origin_tag());
965 }
966 remainder.set_origin_tag(new_tag);
967 return remainder;
968 } else {
969
970 const auto [quotient_1024, remainder_1024] = (left * right).divmod(modulus);
971 std::vector<bigfield> new_to_add;
972 for (auto& add_element : to_add) {
973 new_to_add.push_back(add_element);
974 }
975
976 new_to_add.push_back(bigfield(ctx, remainder_1024.lo.lo));
977 return sum(new_to_add);
978 }
979 } else {
981 // Check the quotient fits the range proof
982 auto [reduction_required, num_quotient_bits] = get_quotient_reduction_info(
983 { get_maximum_value() }, { get_maximum_value() }, to_add, { DEFAULT_MAXIMUM_REMAINDER });
984
985 if (reduction_required) {
986 self_reduce();
987 return sqradd(to_add);
988 }
989 const auto [quotient_1024, remainder_1024] = (left * right + add_right).divmod(modulus);
990 uint512_t quotient_value = quotient_1024.lo;
991 uint256_t remainder_value = remainder_1024.lo.lo;
992
993 quotient = create_from_u512_as_witness(ctx, quotient_value, false, num_quotient_bits);
994 remainder = create_from_u512_as_witness(ctx, remainder_value);
995 };
996 OriginTag new_tag = get_origin_tag();
997 for (auto& element : to_add) {
998 new_tag = OriginTag(new_tag, element.get_origin_tag());
999 }
1000 remainder.set_origin_tag(new_tag);
1001 unsafe_evaluate_square_add(*this, to_add, quotient, remainder);
1002 return remainder;
1003}
1004
1005template <typename Builder, typename T> bigfield<Builder, T> bigfield<Builder, T>::pow(const uint32_t exponent) const
1006{
1007 // Just return one immediately
1008 if (exponent == 0) {
1009 return bigfield(uint256_t(1));
1010 }
1011
1012 // If this is a constant, compute result directly
1013 if (is_constant()) {
1014 auto base_val = get_value();
1015 uint512_t result_val = 1;
1016 uint512_t base = base_val % modulus_u512;
1017 uint32_t shifted_exponent = exponent;
1018
1019 // Fast modular exponentiation
1020 while (shifted_exponent > 0) {
1021 if (shifted_exponent & 1) {
1022 result_val = (uint1024_t(result_val) * uint1024_t(base) % uint1024_t(modulus_u512)).lo;
1023 }
1024 base = (uint1024_t(base) * uint1024_t(base) % uint1024_t(modulus_u512)).lo;
1025 shifted_exponent >>= 1;
1026 }
1027 return bigfield(this->context, uint256_t(result_val.lo));
1028 }
1029
1030 bool accumulator_initialized = false;
1031 bigfield accumulator;
1032 bigfield running_power = *this;
1033 uint32_t shifted_exponent = exponent;
1034
1035 // Square and multiply
1036 while (shifted_exponent != 0) {
1037 if (shifted_exponent & 1) {
1038 if (!accumulator_initialized) {
1039 accumulator = running_power;
1040 accumulator_initialized = true;
1041 } else {
1042 accumulator *= running_power;
1043 }
1044 }
1045 shifted_exponent >>= 1;
1046
1047 // Only square if there are more bits to process.
1048 // It is important to avoid squaring in the final iteration as it otherwise results in
1049 // unwanted gates and variables in the circuit.
1050 if (shifted_exponent != 0) {
1051 running_power = running_power.sqr();
1052 }
1053 }
1054 return accumulator;
1056
1057template <typename Builder, typename T>
1059{
1060 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
1061 Builder* ctx = context ? context : to_mul.context;
1062 reduction_check();
1063 to_mul.reduction_check();
1064
1066 bool add_constant = true;
1067
1068 for (const auto& add_element : to_add) {
1069 add_element.reduction_check();
1070 add_values += add_element.get_value();
1071 add_constant = add_constant && (add_element.is_constant());
1072 }
1073
1074 const uint1024_t left(get_value());
1075 const uint1024_t mul_right(to_mul.get_value());
1076 const uint1024_t add_right(add_values);
1077 const uint1024_t modulus(target_basis.modulus);
1078
1079 const auto [quotient_1024, remainder_1024] = (left * mul_right + add_right).divmod(modulus);
1080
1081 const uint512_t quotient_value = quotient_1024.lo;
1082 const uint512_t remainder_value = remainder_1024.lo;
1083
1084 bigfield remainder;
1085 bigfield quotient;
1086 if (is_constant() && to_mul.is_constant() && add_constant) {
1087 remainder = bigfield(ctx, uint256_t(remainder_value.lo));
1088 return remainder;
1089 } else if (is_constant() && to_mul.is_constant()) {
1090 const auto [_, mul_remainder_1024] = (left * mul_right).divmod(modulus);
1091 std::vector<bigfield> to_add_copy(to_add);
1092 to_add_copy.push_back(bigfield(ctx, uint256_t(mul_remainder_1024.lo.lo)));
1093 return bigfield::sum(to_add_copy);
1094 } else {
1095 auto [reduction_required, num_quotient_bits] = get_quotient_reduction_info(
1096 { get_maximum_value() }, { to_mul.get_maximum_value() }, to_add, { DEFAULT_MAXIMUM_REMAINDER });
1097 if (reduction_required) {
1098 if (get_maximum_value() > to_mul.get_maximum_value()) {
1099 self_reduce();
1100 } else {
1101 to_mul.self_reduce();
1102 }
1103 return (*this).madd(to_mul, to_add);
1104 }
1105 quotient = create_from_u512_as_witness(ctx, quotient_value, false, num_quotient_bits);
1106 remainder = create_from_u512_as_witness(ctx, remainder_value);
1107 };
1109 // We need to manually propagate the origin tag
1110 OriginTag new_tag = OriginTag(get_origin_tag(), to_mul.get_origin_tag());
1111 for (auto& element : to_add) {
1112 new_tag = OriginTag(new_tag, element.get_origin_tag());
1113 }
1114 remainder.set_origin_tag(new_tag);
1115 quotient.set_origin_tag(new_tag);
1116 unsafe_evaluate_multiply_add(*this, to_mul, to_add, quotient, { remainder });
1117
1118 return remainder;
1119}
1120
1132template <typename Builder, typename T>
1134 std::vector<bigfield>& mul_right,
1135 const std::vector<bigfield>& to_add)
1137 BB_ASSERT_EQ(mul_left.size(), mul_right.size());
1138 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
1139 BB_ASSERT_LTE(mul_left.size(), MAXIMUM_SUMMAND_COUNT);
1140
1141 const size_t number_of_products = mul_left.size();
1142 // Get the maximum values of elements
1143 std::vector<uint512_t> max_values_left;
1144 std::vector<uint512_t> max_values_right;
1145
1146 max_values_left.reserve(number_of_products);
1147 max_values_right.reserve(number_of_products);
1148 // Do regular reduction checks for all elements
1149 for (auto& left_element : mul_left) {
1150 left_element.reduction_check();
1151 max_values_left.emplace_back(left_element.get_maximum_value());
1152 }
1153
1154 for (auto& right_element : mul_right) {
1155 right_element.reduction_check();
1156 max_values_right.emplace_back(right_element.get_maximum_value());
1157 }
1158
1159 // Perform CRT checks for the whole evaluation
1160 // 1. Check if we can overflow CRT modulus
1161 // 2. Check if the quotient actually fits in our range proof.
1162 // 3. If we haven't passed one of the checks, reduce accordingly, starting with the largest product
1163
1164 // We only get the bitlength of range proof if there is no reduction
1165 bool reduction_required = std::get<0>(
1166 get_quotient_reduction_info(max_values_left, max_values_right, to_add, { DEFAULT_MAXIMUM_REMAINDER }));
1167
1168 if (reduction_required) {
1169
1170 // We are out of luck and have to reduce the elements to keep the intermediate result below CRT modulus
1171 // For that we need to compute the maximum update - how much reducing each element is going to update the
1172 // quotient.
1173 // Contents of the tuple: | Qmax_before-Qmax_after | product number | argument number |
1175
1176 // We use this lambda function before the loop and in the loop itself
1177 // It computes the maximum value update from reduction of each element
1178 auto compute_updates = [](std::vector<std::tuple<uint1024_t, size_t, size_t>>& maxval_updates,
1179 std::vector<bigfield>& m_left,
1180 std::vector<bigfield>& m_right,
1181 size_t number_of_products) {
1182 maxval_updates.resize(0);
1183 maxval_updates.reserve(number_of_products * 2);
1184 // Compute all reduction differences
1185 for (size_t i = 0; i < number_of_products; i++) {
1186 uint1024_t original_left = static_cast<uint1024_t>(m_left[i].get_maximum_value());
1187 uint1024_t original_right = static_cast<uint1024_t>(m_right[i].get_maximum_value());
1188 uint1024_t original_product = original_left * original_right;
1189 if (m_left[i].is_constant()) {
1190 // If the multiplicand is constant, we can't reduce it, so the update is 0.
1191 maxval_updates.emplace_back(std::tuple<uint1024_t, size_t, size_t>(0, i, 0));
1192 } else {
1193 uint1024_t new_product = DEFAULT_MAXIMUM_REMAINDER * original_right;
1194 if (new_product > original_product) {
1195 throw_or_abort("bigfield: This should never happen");
1196 }
1197 maxval_updates.emplace_back(
1198 std::tuple<uint1024_t, size_t, size_t>(original_product - new_product, i, 0));
1199 }
1200 if (m_right[i].is_constant()) {
1201 // If the multiplicand is constant, we can't reduce it, so the update is 0.
1202 maxval_updates.emplace_back(std::tuple<uint1024_t, size_t, size_t>(0, i, 1));
1203 } else {
1204 uint1024_t new_product = DEFAULT_MAXIMUM_REMAINDER * original_left;
1205 if (new_product > original_product) {
1206 throw_or_abort("bigfield: This should never happen");
1207 }
1208 maxval_updates.emplace_back(
1209 std::tuple<uint1024_t, size_t, size_t>(original_product - new_product, i, 1));
1210 }
1211 }
1212 };
1213
1214 auto compare_update_tuples = [](std::tuple<uint1024_t, size_t, size_t>& left_element,
1216 return std::get<0>(left_element) > std::get<0>(right_element);
1217 };
1218
1219 // Now we loop through, reducing 1 element each time. This is costly in code, but allows us to use fewer
1220 // gates
1221
1222 while (reduction_required) {
1223 // Compute the possible reduction updates
1224 compute_updates(maximum_value_updates, mul_left, mul_right, number_of_products);
1225
1226 // Sort the vector, larger values first
1227 std::sort(maximum_value_updates.begin(), maximum_value_updates.end(), compare_update_tuples);
1228
1229 // We choose the largest update
1230 auto [update_size, largest_update_product_index, multiplicand_index] = maximum_value_updates[0];
1231 if (!update_size) {
1232 throw_or_abort("bigfield: Can't reduce further");
1233 }
1234 // Reduce the larger of the multiplicands that compose the product
1235 if (multiplicand_index == 0) {
1236 mul_left[largest_update_product_index].self_reduce();
1237 } else {
1238 mul_right[largest_update_product_index].self_reduce();
1239 }
1240
1241 for (size_t i = 0; i < number_of_products; i++) {
1242 max_values_left[i] = mul_left[i].get_maximum_value();
1243 max_values_right[i] = mul_right[i].get_maximum_value();
1244 }
1245 reduction_required = std::get<0>(
1246 get_quotient_reduction_info(max_values_left, max_values_right, to_add, { DEFAULT_MAXIMUM_REMAINDER }));
1247 }
1248
1249 // Now we have reduced everything exactly to the point of no overflow. There is probably a way to use even
1250 // fewer reductions, but for now this will suffice.
1251 }
1252}
1253
1263template <typename Builder, typename T>
1265 const std::vector<bigfield>& mul_right,
1266 const std::vector<bigfield>& to_add,
1267 bool fix_remainder_to_zero)
1268{
1269 BB_ASSERT_EQ(mul_left.size(), mul_right.size());
1270 BB_ASSERT_LTE(mul_left.size(), MAXIMUM_SUMMAND_COUNT);
1271 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
1272
1273 std::vector<bigfield> mutable_mul_left(mul_left);
1274 std::vector<bigfield> mutable_mul_right(mul_right);
1275
1276 const size_t number_of_products = mul_left.size();
1277
1278 const uint1024_t modulus(target_basis.modulus);
1279 uint1024_t worst_case_product_sum(0);
1280 uint1024_t add_right_constant_sum(0);
1281
1282 // First we do all constant optimizations
1283 bool add_constant = true;
1284 std::vector<bigfield> new_to_add;
1285
1286 OriginTag new_tag{};
1287 // Merge all tags. Do it in pairs (logically a submitted value can be masked by a challenge)
1288 for (auto [left_element, right_element] : zip_view(mul_left, mul_right)) {
1289 new_tag = OriginTag(new_tag, OriginTag(left_element.get_origin_tag(), right_element.get_origin_tag()));
1290 }
1291 for (auto& element : to_add) {
1292 new_tag = OriginTag(new_tag, element.get_origin_tag());
1293 }
1294
1295 for (const auto& add_element : to_add) {
1296 add_element.reduction_check();
1297 if (add_element.is_constant()) {
1298 add_right_constant_sum += uint1024_t(add_element.get_value());
1299 } else {
1300 add_constant = false;
1301 new_to_add.push_back(add_element);
1302 }
1303 }
1304
1305 // Compute the product sum
1306 // Optimize constant use
1307 uint1024_t sum_of_constant_products(0);
1308 std::vector<bigfield> new_input_left;
1309 std::vector<bigfield> new_input_right;
1310 bool product_sum_constant = true;
1311 for (size_t i = 0; i < number_of_products; i++) {
1312 if (mutable_mul_left[i].is_constant() && mutable_mul_right[i].is_constant()) {
1313 // If constant, just add to the sum
1314 sum_of_constant_products +=
1315 uint1024_t(mutable_mul_left[i].get_value()) * uint1024_t(mutable_mul_right[i].get_value());
1316 } else {
1317 // If not, add to nonconstant sum and remember the elements
1318 new_input_left.push_back(mutable_mul_left[i]);
1319 new_input_right.push_back(mutable_mul_right[i]);
1320 product_sum_constant = false;
1321 }
1322 }
1323
1324 Builder* ctx = nullptr;
1325 // Search through all multiplicands on the left
1326 for (auto& el : mutable_mul_left) {
1327 if (el.context) {
1328 ctx = el.context;
1329 break;
1330 }
1331 }
1332 // And on the right
1333 if (!ctx) {
1334 for (auto& el : mutable_mul_right) {
1335 if (el.context) {
1336 ctx = el.context;
1337 break;
1338 }
1339 }
1340 }
1341 if (product_sum_constant) {
1342 if (add_constant) {
1343 // Simply return the constant, no need unsafe_multiply_add
1344 const auto [quotient_1024, remainder_1024] =
1345 (sum_of_constant_products + add_right_constant_sum).divmod(modulus);
1346 ASSERT(!fix_remainder_to_zero || remainder_1024 == 0);
1347 auto result = bigfield(ctx, uint256_t(remainder_1024.lo.lo));
1348 result.set_origin_tag(new_tag);
1349 return result;
1350 } else {
1351 const auto [quotient_1024, remainder_1024] =
1352 (sum_of_constant_products + add_right_constant_sum).divmod(modulus);
1353 uint256_t remainder_value = remainder_1024.lo.lo;
1354 bigfield result;
1355 if (remainder_value == uint256_t(0)) {
1356 // No need to add extra term to new_to_add
1357 result = sum(new_to_add);
1358 } else {
1359 // Add the constant term
1360 new_to_add.push_back(bigfield(ctx, uint256_t(remainder_value)));
1361 result = sum(new_to_add);
1362 }
1363 if (fix_remainder_to_zero) {
1364 result.self_reduce();
1365 result.assert_equal(zero());
1366 }
1367 result.set_origin_tag(new_tag);
1368 return result;
1369 }
1370 }
1371
1372 // Now that we know that there is at least 1 non-constant multiplication, we can start estimating reductions.
1373 ASSERT(ctx != nullptr);
1374
1375 // Compute the constant term we're adding
1376 const auto [_, constant_part_remainder_1024] = (sum_of_constant_products + add_right_constant_sum).divmod(modulus);
1377 const uint256_t constant_part_remainder_256 = constant_part_remainder_1024.lo.lo;
1378
1379 if (constant_part_remainder_256 != uint256_t(0)) {
1380 new_to_add.push_back(bigfield(ctx, constant_part_remainder_256));
1381 }
1382 // Compute added sum
1383 uint1024_t add_right_final_sum(0);
1384 uint1024_t add_right_maximum(0);
1385 for (const auto& add_element : new_to_add) {
1386 // Technically not needed, but better to leave just in case
1387 add_element.reduction_check();
1388 add_right_final_sum += uint1024_t(add_element.get_value());
1389
1390 add_right_maximum += uint1024_t(add_element.get_maximum_value());
1391 }
1392 const size_t final_number_of_products = new_input_left.size();
1393
1394 // We need to check if it is possible to reduce the products enough
1395 worst_case_product_sum = uint1024_t(final_number_of_products) * uint1024_t(DEFAULT_MAXIMUM_REMAINDER) *
1396 uint1024_t(DEFAULT_MAXIMUM_REMAINDER);
1397
1398 // Check that we can actually reduce the products enough, this assert will probably never get triggered
1399 BB_ASSERT_LT(worst_case_product_sum + add_right_maximum, get_maximum_crt_product());
1400
1401 // We've collapsed all constants, checked if we can compute the sum of products in the worst case, time to check
1402 // if we need to reduce something
1403 perform_reductions_for_mult_madd(new_input_left, new_input_right, new_to_add);
1404 uint1024_t sum_of_products_final(0);
1405 for (size_t i = 0; i < final_number_of_products; i++) {
1406 sum_of_products_final += uint1024_t(new_input_left[i].get_value()) * uint1024_t(new_input_right[i].get_value());
1407 }
1408
1409 // Get the number of range proof bits for the quotient
1410 const size_t num_quotient_bits = get_quotient_max_bits({ DEFAULT_MAXIMUM_REMAINDER });
1411
1412 // Compute the quotient and remainder
1413 const auto [quotient_1024, remainder_1024] = (sum_of_products_final + add_right_final_sum).divmod(modulus);
1414
1415 // If we are establishing an identity and the remainder has to be zero, we need to check, that it actually is
1416
1417 if (fix_remainder_to_zero) {
1418 // This is not the only check. Circuit check is coming later :)
1419 BB_ASSERT_EQ(remainder_1024.lo, uint512_t(0));
1420 }
1421 const uint512_t quotient_value = quotient_1024.lo;
1422 const uint512_t remainder_value = remainder_1024.lo;
1423
1424 bigfield remainder;
1425 bigfield quotient;
1426 // Constrain quotient to mitigate CRT overflow attacks
1427 quotient = create_from_u512_as_witness(ctx, quotient_value, false, num_quotient_bits);
1428
1429 if (fix_remainder_to_zero) {
1430 remainder = zero();
1431 // remainder needs to be defined as wire value and not selector values to satisfy
1432 // Ultra's bigfield custom gates
1433 remainder.convert_constant_to_fixed_witness(ctx);
1434 } else {
1435 remainder = create_from_u512_as_witness(ctx, remainder_value);
1436 }
1437
1438 // We need to manually propagate the origin tag
1439 quotient.set_origin_tag(new_tag);
1440 remainder.set_origin_tag(new_tag);
1441
1442 unsafe_evaluate_multiple_multiply_add(new_input_left, new_input_right, new_to_add, quotient, { remainder });
1443
1444 return remainder;
1445}
1446
1452template <typename Builder, typename T>
1454 const bigfield& right_a,
1455 const bigfield& left_b,
1456 const bigfield& right_b,
1457 const std::vector<bigfield>& to_add)
1458{
1459 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
1460 left_a.reduction_check();
1461 right_a.reduction_check();
1462 left_b.reduction_check();
1463 right_b.reduction_check();
1464
1465 std::vector<bigfield> mul_left = { left_a, left_b };
1466 std::vector<bigfield> mul_right = { right_a, right_b };
1467
1468 return mult_madd(mul_left, mul_right, to_add);
1469}
1470
1489template <typename Builder, typename T>
1491 const std::vector<bigfield>& mul_right,
1492 const bigfield& divisor,
1493 const std::vector<bigfield>& to_sub,
1494 bool enable_divisor_nz_check)
1495{
1496 // Check the basics
1497 BB_ASSERT_EQ(mul_left.size(), mul_right.size());
1498 ASSERT(divisor.get_value() != 0);
1499
1500 OriginTag new_tag = divisor.get_origin_tag();
1501 for (auto [left_element, right_element] : zip_view(mul_left, mul_right)) {
1502 new_tag = OriginTag(new_tag, OriginTag(left_element.get_origin_tag(), right_element.get_origin_tag()));
1503 }
1504 for (auto& element : to_sub) {
1505 new_tag = OriginTag(new_tag, element.get_origin_tag());
1506 }
1507 // Get the context
1508 Builder* ctx = divisor.context;
1509 if (ctx == NULL) {
1510 for (auto& el : mul_left) {
1511 if (el.context != NULL) {
1512 ctx = el.context;
1513 break;
1514 }
1515 }
1516 }
1517 if (ctx == NULL) {
1518 for (auto& el : mul_right) {
1519 if (el.context != NULL) {
1520 ctx = el.context;
1521 break;
1522 }
1523 }
1524 }
1525 if (ctx == NULL) {
1526 for (auto& el : to_sub) {
1527 if (el.context != NULL) {
1528 ctx = el.context;
1529 break;
1530 }
1531 }
1532 }
1533 const size_t num_multiplications = mul_left.size();
1534 native product_native = 0;
1535 bool products_constant = true;
1536
1537 // This check is optional, because it is heavy and often we don't need it at all
1538 if (enable_divisor_nz_check) {
1539 divisor.assert_is_not_equal(zero());
1540 }
1541
1542 // Compute the sum of products
1543 for (size_t i = 0; i < num_multiplications; ++i) {
1544 const native mul_left_native(uint512_t(mul_left[i].get_value() % modulus_u512).lo);
1545 const native mul_right_native(uint512_t(mul_right[i].get_value() % modulus_u512).lo);
1546 product_native += (mul_left_native * -mul_right_native);
1547 products_constant = products_constant && mul_left[i].is_constant() && mul_right[i].is_constant();
1548 }
1549
1550 // Compute the sum of to_sub
1551 native sub_native(0);
1552 bool sub_constant = true;
1553 for (const auto& sub : to_sub) {
1554 sub_native += (uint512_t(sub.get_value() % modulus_u512).lo);
1555 sub_constant = sub_constant && sub.is_constant();
1556 }
1557
1558 native divisor_native(uint512_t(divisor.get_value() % modulus_u512).lo);
1559
1560 // Compute the result
1561 const native result_native = (product_native - sub_native) / divisor_native;
1562
1563 const uint1024_t result_value = uint1024_t(uint512_t(static_cast<uint256_t>(result_native)));
1564
1565 // If everything is constant, then we just return the constant
1566 if (sub_constant && products_constant && divisor.is_constant()) {
1567 auto result = bigfield(ctx, uint256_t(result_value.lo.lo));
1568 result.set_origin_tag(new_tag);
1569 return result;
1570 }
1571
1572 ASSERT(ctx != NULL);
1573 // Create the result witness
1574 bigfield result = create_from_u512_as_witness(ctx, result_value.lo);
1575
1576 // We need to manually propagate the origin tag
1577 result.set_origin_tag(new_tag);
1578
1579 std::vector<bigfield> eval_left{ result };
1580 std::vector<bigfield> eval_right{ divisor };
1581 for (const auto& in : mul_left) {
1582 eval_left.emplace_back(in);
1583 }
1584 for (const auto& in : mul_right) {
1585 eval_right.emplace_back(in);
1586 }
1587
1588 mult_madd(eval_left, eval_right, to_sub, true);
1589
1590 return result;
1591}
1592
1593template <typename Builder, typename T>
1595{
1596 Builder* ctx = context ? context : predicate.context;
1597
1598 if (is_constant() && predicate.is_constant()) {
1599 auto result = *this;
1600 if (predicate.get_value()) {
1601 BB_ASSERT_LT(get_value(), modulus_u512);
1602 uint512_t out_val = (modulus_u512 - get_value()) % modulus_u512;
1603 result = bigfield(ctx, out_val.lo);
1604 }
1605 result.set_origin_tag(OriginTag(get_origin_tag(), predicate.get_origin_tag()));
1606 return result;
1607 }
1608 reduction_check();
1609
1610 // We want to check:
1611 // predicate = 1 ==> (0 - *this)
1612 // predicate = 0 ==> *this
1613 //
1614 // We just use the conditional_assign method to do this as it costs the same number of gates as computing
1615 // p * (0 - *this) + (1 - p) * (*this)
1616 //
1617 bigfield<Builder, T> negative_this = zero() - *this;
1618 bigfield<Builder, T> result = bigfield<Builder, T>::conditional_assign(predicate, negative_this, *this);
1619
1620 return result;
1621}
1622
1623template <typename Builder, typename T>
1625 const bool_t<Builder>& predicate) const
1626{
1627 // If the predicate is constant, the conditional selection can be done out of circuit
1628 if (predicate.is_constant()) {
1629 bigfield result = predicate.get_value() ? other : *this;
1630 result.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag(), predicate.get_origin_tag()));
1631 return result;
1632 }
1633
1634 // If both elements are the same, we can just return one of them
1635 auto is_limb_same = [](const field_ct& a, const field_ct& b) {
1636 const bool is_witness_index_same = a.get_witness_index() == b.get_witness_index();
1637 const bool is_add_constant_same = a.additive_constant == b.additive_constant;
1638 const bool is_mul_constant_same = a.multiplicative_constant == b.multiplicative_constant;
1639 return is_witness_index_same && is_add_constant_same && is_mul_constant_same;
1640 };
1641
1642 bool is_limb_0_same = is_limb_same(binary_basis_limbs[0].element, other.binary_basis_limbs[0].element);
1643 bool is_limb_1_same = is_limb_same(binary_basis_limbs[1].element, other.binary_basis_limbs[1].element);
1644 bool is_limb_2_same = is_limb_same(binary_basis_limbs[2].element, other.binary_basis_limbs[2].element);
1645 bool is_limb_3_same = is_limb_same(binary_basis_limbs[3].element, other.binary_basis_limbs[3].element);
1646 bool is_prime_limb_same = is_limb_same(prime_basis_limb, other.prime_basis_limb);
1647 if (is_limb_0_same && is_limb_1_same && is_limb_2_same && is_limb_3_same && is_prime_limb_same) {
1648 return *this;
1649 }
1650
1651 Builder* ctx = context ? context : (other.context ? other.context : predicate.context);
1652
1653 // For each limb, we must select:
1654 // `this` if predicate == 0
1655 // `other` if predicate == 1
1656 //
1657 // Thus, we compute the resulting limb as follows:
1658 // result.limb := predicate * (other.limb - this.limb) + this.limb.
1659 //
1660 // Note that each call to `madd` will add a gate as predicate is a witness at this point.
1661 // There can be edge cases where `this` and `other` are both constants and only differ in one limb.
1662 // In such a case, the `madd` for the differing limb will be a no-op (i.e., redundant gate), as the
1663 // difference will be zero. For example,
1664 // binary limbs prime limb
1665 // this: (0x5, 0x1, 0x0, 0x0) (0x100000000000000005)
1666 // other: (0x7, 0x1, 0x0, 0x0) (0x100000000000000007)
1667 // Here, the `madd` for the second, third and fourth binary limbs will be a no-op, as the difference
1668 // between `this` and `other` is zero for those limbs.
1669 //
1670 // We allow this to happen because we want to maintain limb consistency (i.e., all limbs either witness or
1671 // constant).
1672 field_ct binary_limb_0 = field_ct(predicate).madd(
1673 other.binary_basis_limbs[0].element - binary_basis_limbs[0].element, binary_basis_limbs[0].element);
1674 field_ct binary_limb_1 = field_ct(predicate).madd(
1675 other.binary_basis_limbs[1].element - binary_basis_limbs[1].element, binary_basis_limbs[1].element);
1676 field_ct binary_limb_2 = field_ct(predicate).madd(
1677 other.binary_basis_limbs[2].element - binary_basis_limbs[2].element, binary_basis_limbs[2].element);
1678 field_ct binary_limb_3 = field_ct(predicate).madd(
1679 other.binary_basis_limbs[3].element - binary_basis_limbs[3].element, binary_basis_limbs[3].element);
1680 field_ct prime_limb = field_ct(predicate).madd(other.prime_basis_limb - prime_basis_limb, prime_basis_limb);
1681
1682 bigfield result(ctx);
1683 // the maximum of the maximal values of elements is large enough
1684 result.binary_basis_limbs[0] =
1685 Limb(binary_limb_0, std::max(binary_basis_limbs[0].maximum_value, other.binary_basis_limbs[0].maximum_value));
1686 result.binary_basis_limbs[1] =
1687 Limb(binary_limb_1, std::max(binary_basis_limbs[1].maximum_value, other.binary_basis_limbs[1].maximum_value));
1688 result.binary_basis_limbs[2] =
1689 Limb(binary_limb_2, std::max(binary_basis_limbs[2].maximum_value, other.binary_basis_limbs[2].maximum_value));
1690 result.binary_basis_limbs[3] =
1691 Limb(binary_limb_3, std::max(binary_basis_limbs[3].maximum_value, other.binary_basis_limbs[3].maximum_value));
1692 result.prime_basis_limb = prime_limb;
1693 result.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag(), predicate.tag));
1694 return result;
1695}
1696
1717template <typename Builder, typename T> bool_t<Builder> bigfield<Builder, T>::operator==(const bigfield& other) const
1718{
1719 Builder* ctx = context ? context : other.get_context();
1720 auto lhs = get_value() % modulus_u512;
1721 auto rhs = other.get_value() % modulus_u512;
1722 bool is_equal_raw = (lhs == rhs);
1723 if (is_constant() && other.is_constant()) {
1724 return is_equal_raw;
1725 }
1726
1727 // The context should not be null at this point.
1728 ASSERT(ctx != NULL);
1729 bool_t<Builder> is_equal = witness_t<Builder>(ctx, is_equal_raw);
1730
1731 // We need to manually propagate the origin tag
1732 is_equal.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag()));
1733
1734 bigfield diff = (*this) - other;
1735 native diff_native = native((diff.get_value() % modulus_u512).lo);
1736 native inverse_native = is_equal_raw ? 0 : diff_native.invert();
1737
1738 bigfield inverse = bigfield::from_witness(ctx, inverse_native);
1739
1740 // We need to manually propagate the origin tag
1741 inverse.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag()));
1742
1743 bigfield multiplicand = bigfield::conditional_assign(is_equal, one(), inverse);
1744
1745 bigfield product = diff * multiplicand;
1746
1747 field_t result = field_t<Builder>::conditional_assign(is_equal, 0, 1);
1748
1749 product.prime_basis_limb.assert_equal(result);
1750 product.binary_basis_limbs[0].element.assert_equal(result);
1751 product.binary_basis_limbs[1].element.assert_equal(0);
1752 product.binary_basis_limbs[2].element.assert_equal(0);
1753 product.binary_basis_limbs[3].element.assert_equal(0);
1754 is_equal.set_origin_tag(OriginTag(get_origin_tag(), other.get_origin_tag()));
1755 return is_equal;
1756}
1757
1758template <typename Builder, typename T> void bigfield<Builder, T>::reduction_check() const
1759{
1760 if (is_constant()) {
1761 uint256_t reduced_value = (get_value() % modulus_u512).lo;
1762 bigfield reduced(context, uint256_t(reduced_value));
1763 // Save tags
1764 const auto origin_tags = std::vector({ binary_basis_limbs[0].element.get_origin_tag(),
1765 binary_basis_limbs[1].element.get_origin_tag(),
1766 binary_basis_limbs[2].element.get_origin_tag(),
1767 binary_basis_limbs[3].element.get_origin_tag(),
1768 prime_basis_limb.get_origin_tag() });
1769
1770 // Directly assign to mutable members (avoiding assignment operator)
1771 binary_basis_limbs[0] = reduced.binary_basis_limbs[0];
1772 binary_basis_limbs[1] = reduced.binary_basis_limbs[1];
1773 binary_basis_limbs[2] = reduced.binary_basis_limbs[2];
1774 binary_basis_limbs[3] = reduced.binary_basis_limbs[3];
1775 prime_basis_limb = reduced.prime_basis_limb;
1776
1777 // Preserve origin tags (useful in simulator)
1778 binary_basis_limbs[0].element.set_origin_tag(origin_tags[0]);
1779 binary_basis_limbs[1].element.set_origin_tag(origin_tags[1]);
1780 binary_basis_limbs[2].element.set_origin_tag(origin_tags[2]);
1781 binary_basis_limbs[3].element.set_origin_tag(origin_tags[3]);
1782 prime_basis_limb.set_origin_tag(origin_tags[4]);
1783 return;
1784 }
1785
1786 uint256_t maximum_unreduced_limb_value = get_maximum_unreduced_limb_value();
1787 bool limb_overflow_test_0 = binary_basis_limbs[0].maximum_value > maximum_unreduced_limb_value;
1788 bool limb_overflow_test_1 = binary_basis_limbs[1].maximum_value > maximum_unreduced_limb_value;
1789 bool limb_overflow_test_2 = binary_basis_limbs[2].maximum_value > maximum_unreduced_limb_value;
1790 bool limb_overflow_test_3 = binary_basis_limbs[3].maximum_value > maximum_unreduced_limb_value;
1791 if (get_maximum_value() > get_maximum_unreduced_value() || limb_overflow_test_0 || limb_overflow_test_1 ||
1792 limb_overflow_test_2 || limb_overflow_test_3) {
1793 self_reduce();
1794 }
1795}
1796
1797template <typename Builder, typename T> void bigfield<Builder, T>::sanity_check() const
1798{
1799
1800 uint256_t prohibited_limb_value = get_prohibited_limb_value();
1801 bool limb_overflow_test_0 = binary_basis_limbs[0].maximum_value > prohibited_limb_value;
1802 bool limb_overflow_test_1 = binary_basis_limbs[1].maximum_value > prohibited_limb_value;
1803 bool limb_overflow_test_2 = binary_basis_limbs[2].maximum_value > prohibited_limb_value;
1804 bool limb_overflow_test_3 = binary_basis_limbs[3].maximum_value > prohibited_limb_value;
1805 // max_val < sqrt(2^T * n)
1806 // Note this is a static assertion, so it is not checked at runtime
1807 ASSERT(!(get_maximum_value() > get_prohibited_value() || limb_overflow_test_0 || limb_overflow_test_1 ||
1808 limb_overflow_test_2 || limb_overflow_test_3));
1809}
1810
1811// Underneath performs unsafe_assert_less_than(modulus)
1812// create a version with mod 2^t element part in [0,p-1]
1813// After range-constraining to size 2^s, we check (p-1)-a is non-negative as integer.
1814// We perform subtraction using carries on blocks of size 2^b. The operations inside the blocks are done mod r
1815// Including the effect of carries the operation inside each limb is in the range [-2^b-1,2^{b+1}]
1816// Assuming this values are all distinct mod r, which happens e.g. if r/2>2^{b+1}, then if all limb values are
1817// non-negative at the end of subtraction, we know the subtraction result is positive as integers and a<p
1818template <typename Builder, typename T> void bigfield<Builder, T>::assert_is_in_field(std::string const& msg) const
1819{
1820 assert_less_than(modulus, msg == "bigfield::assert_is_in_field" ? "bigfield::assert_less_than" : msg);
1821}
1822
1823// Asserts that the element is < upper_limit. We first range constrain the limbs and then calls
1824// unsafe_assert_less_than(upper_limit).
1825template <typename Builder, typename T>
1826void bigfield<Builder, T>::assert_less_than(const uint256_t& upper_limit, std::string const& msg) const
1827{
1828 bool is_default_msg = msg == "bigfield::assert_less_than";
1829
1830 // Range constrain the binary basis limbs of the element to respective limb sizes.
1831 // This is required because the comparison is done using subtractions, which can result in overflows.
1832 // Range constrain the first two limbs each to NUM_LIMB_BITS
1833 auto ctx = get_context();
1834 ctx->range_constrain_two_limbs(binary_basis_limbs[0].element.get_normalized_witness_index(),
1835 binary_basis_limbs[1].element.get_normalized_witness_index(),
1836 static_cast<size_t>(NUM_LIMB_BITS),
1837 static_cast<size_t>(NUM_LIMB_BITS),
1838 is_default_msg ? "bigfield::assert_less_than: limb 0 or 1 too large" : msg);
1839
1840 // Range constrain the last two limbs to NUM_LIMB_BITS and NUM_LAST_LIMB_BITS
1841 ctx->range_constrain_two_limbs(binary_basis_limbs[2].element.get_normalized_witness_index(),
1842 binary_basis_limbs[3].element.get_normalized_witness_index(),
1843 static_cast<size_t>(NUM_LIMB_BITS),
1844 static_cast<size_t>(NUM_LAST_LIMB_BITS),
1845 is_default_msg ? "bigfield::assert_less_than: limb 2 or 3 too large" : msg);
1846
1847 // Now we can check that the element is < upper_limit.
1848 unsafe_assert_less_than(upper_limit, is_default_msg ? "bigfield::unsafe_assert_less_than" : msg);
1849}
1850
1851// Reduces the element mod p. This is a strict reduction mod p, so the output is guaranteed to be < p.
1852template <typename Builder, typename T> void bigfield<Builder, T>::reduce_mod_target_modulus() const
1853{
1854 // First we lazy-reduce the element mod p, and constrain the output/remainder to be < 2^s where s = ceil(log2(p)).
1855 // This brings the element into the range [0, 2^s) such that the limbs of the reduced element are all range
1856 // constrained to < 2^b (last limb < 2^(s - 3b)).
1857 self_reduce();
1858
1859 // Then we constrain the element to be < target modulus using strict comparison.
1860 unsafe_assert_less_than(modulus);
1861}
1862
1863// Asserts that the element is < upper_limit. We mark this as unsafe because it assumes that the element is already
1864// range constrained to < 2^s where s = ceil(log2(p)).
1865template <typename Builder, typename T>
1866void bigfield<Builder, T>::unsafe_assert_less_than(const uint256_t& upper_limit, std::string const& msg) const
1867{
1868 // Warning: this assumes we have run circuit construction at least once in debug mode where large non reduced
1869 // constants are NOT allowed via ASSERT
1870 if (is_constant()) {
1871 BB_ASSERT_LT(get_value(), static_cast<uint512_t>(upper_limit));
1872 return;
1873 }
1874
1875 ASSERT(upper_limit != 0);
1876 // The circuit checks that limit - this >= 0, so if we are doing a less_than comparison, we need to subtract 1
1877 // from the limit
1878 uint256_t strict_upper_limit = upper_limit - uint256_t(1);
1879 uint256_t value = get_value().lo;
1880
1881 const uint256_t upper_limit_value_0 = strict_upper_limit.slice(0, NUM_LIMB_BITS);
1882 const uint256_t upper_limit_value_1 = strict_upper_limit.slice(NUM_LIMB_BITS, NUM_LIMB_BITS * 2);
1883 const uint256_t upper_limit_value_2 = strict_upper_limit.slice(NUM_LIMB_BITS * 2, NUM_LIMB_BITS * 3);
1884 const uint256_t upper_limit_value_3 = strict_upper_limit.slice(NUM_LIMB_BITS * 3, NUM_LIMB_BITS * 4);
1885
1886 const uint256_t val_0 = value.slice(0, NUM_LIMB_BITS);
1887 const uint256_t val_1 = value.slice(NUM_LIMB_BITS, NUM_LIMB_BITS * 2);
1888 const uint256_t val_2 = value.slice(NUM_LIMB_BITS * 2, NUM_LIMB_BITS * 3);
1889
1890 bool borrow_0_value = val_0 > upper_limit_value_0;
1891 bool borrow_1_value = (val_1 + uint256_t(borrow_0_value)) > (upper_limit_value_1);
1892 bool borrow_2_value = (val_2 + uint256_t(borrow_1_value)) > (upper_limit_value_2);
1893
1894 field_t<Builder> upper_limit_0(context, upper_limit_value_0);
1895 field_t<Builder> upper_limit_1(context, upper_limit_value_1);
1896 field_t<Builder> upper_limit_2(context, upper_limit_value_2);
1897 field_t<Builder> upper_limit_3(context, upper_limit_value_3);
1898 bool_t<Builder> borrow_0(witness_t<Builder>(context, borrow_0_value));
1899 bool_t<Builder> borrow_1(witness_t<Builder>(context, borrow_1_value));
1900 bool_t<Builder> borrow_2(witness_t<Builder>(context, borrow_2_value));
1901 // Unset free witness tag because these are auxiliary witnesses
1902 borrow_0.unset_free_witness_tag();
1903 borrow_1.unset_free_witness_tag();
1904 borrow_2.unset_free_witness_tag();
1905
1906 // The way we use borrows here ensures that we are checking that upper_limit - binary_basis > 0.
1907 // We check that the result in each limb is > 0.
1908 // If the modulus part in this limb is smaller, we simply borrow the value from the higher limb.
1909 // The prover can rearrange the borrows the way they like. The important thing is that the borrows are
1910 // constrained.
1911 field_t<Builder> r0 =
1912 upper_limit_0 - binary_basis_limbs[0].element + (static_cast<field_t<Builder>>(borrow_0) * shift_1);
1913 field_t<Builder> r1 = upper_limit_1 - binary_basis_limbs[1].element +
1914 (static_cast<field_t<Builder>>(borrow_1) * shift_1) - static_cast<field_t<Builder>>(borrow_0);
1915 field_t<Builder> r2 = upper_limit_2 - binary_basis_limbs[2].element +
1916 (static_cast<field_t<Builder>>(borrow_2) * shift_1) - static_cast<field_t<Builder>>(borrow_1);
1917 field_t<Builder> r3 = upper_limit_3 - binary_basis_limbs[3].element - static_cast<field_t<Builder>>(borrow_2);
1918
1919 // We need to range constrain the r0,r1,r2,r3 values to ensure they are "small enough".
1920 get_context()->range_constrain_two_limbs(
1923 static_cast<size_t>(NUM_LIMB_BITS),
1924 static_cast<size_t>(NUM_LIMB_BITS),
1925 msg == "bigfield::unsafe_assert_less_than" ? "bigfield::unsafe_assert_less_than: r0 or r1 too large" : msg);
1926 get_context()->range_constrain_two_limbs(
1929 static_cast<size_t>(NUM_LIMB_BITS),
1930 static_cast<size_t>(NUM_LIMB_BITS),
1931 msg == "bigfield::unsafe_assert_less_than" ? "bigfield::unsafe_assert_less_than: r2 or r3 too large" : msg);
1932}
1933
1934// check elements are equal mod p by proving their integer difference is a multiple of p.
1935// This relies on the minus operator for a-b increasing a by a multiple of p large enough so diff is non-negative
1936// When one of the elements is a constant and another is a witness we check equality of limbs, so if the witness
1937// bigfield element is in an unreduced form, it needs to be reduced first. We don't have automatice reduced form
1938// detection for now, so it is up to the circuit writer to detect this
1939template <typename Builder, typename T>
1940void bigfield<Builder, T>::assert_equal(const bigfield& other, std::string const& msg) const
1941{
1942 Builder* ctx = this->context ? this->context : other.context;
1943 if (is_constant() && other.is_constant()) {
1944 std::cerr << "bigfield: calling assert equal on 2 CONSTANT bigfield elements...is this intended?" << std::endl;
1945 BB_ASSERT_EQ(get_value(), other.get_value(), "We expect constants to be less than the target modulus");
1946 return;
1947 } else if (other.is_constant()) {
1948 // NOTE(https://github.com/AztecProtocol/barretenberg/issues/998): This can lead to a situation where
1949 // an honest prover cannot satisfy the constraints, because `this` is not reduced, but `other` is, i.e.,
1950 // `this` = kp + r and `other` = r
1951 // where k is a positive integer. In such a case, the prover cannot satisfy the constraints
1952 // because the limb-differences would not be 0 mod r. Therefore, an honest prover needs to make sure that
1953 // `this` is reduced before calling this method. Also `other` should never be greater than the modulus by
1954 // design. As a precaution, we assert that the circuit-constant `other` is less than the modulus.
1955 BB_ASSERT_LT(other.get_value(), modulus_u512);
1956 field_t<Builder> t0 = (binary_basis_limbs[0].element - other.binary_basis_limbs[0].element);
1957 field_t<Builder> t1 = (binary_basis_limbs[1].element - other.binary_basis_limbs[1].element);
1958 field_t<Builder> t2 = (binary_basis_limbs[2].element - other.binary_basis_limbs[2].element);
1959 field_t<Builder> t3 = (binary_basis_limbs[3].element - other.binary_basis_limbs[3].element);
1960 field_t<Builder> t4 = (prime_basis_limb - other.prime_basis_limb);
1961 t0.assert_is_zero();
1962 t1.assert_is_zero();
1963 t2.assert_is_zero();
1964 t3.assert_is_zero();
1965 t4.assert_is_zero();
1966 return;
1967 } else if (is_constant()) {
1968 other.assert_equal(*this, msg);
1969 return;
1970 } else {
1971 // Catch the error if the reduced value of the two elements are not equal
1972 uint512_t lhs_reduced_value = get_value() % modulus_u512;
1973 uint512_t rhs_reduced_value = other.get_value() % modulus_u512;
1974 if ((lhs_reduced_value != rhs_reduced_value) && !get_context()->failed()) {
1975 get_context()->failure(msg);
1976 }
1977
1978 // Remove tags, we don't want to cause violations on assert_equal
1979 const auto original_tag = get_origin_tag();
1980 const auto other_original_tag = other.get_origin_tag();
1981 set_origin_tag(OriginTag());
1982 other.set_origin_tag(OriginTag());
1983
1984 bigfield diff = *this - other;
1985 const uint512_t diff_val = diff.get_value();
1986 const uint512_t modulus(target_basis.modulus);
1987
1988 const auto [quotient_512, remainder_512] = (diff_val).divmod(modulus);
1989 if (remainder_512 != 0) {
1990 std::cerr << "bigfield: remainder not zero!" << std::endl;
1991 }
1992 bigfield quotient;
1993
1994 const size_t num_quotient_bits = get_quotient_max_bits({ 0 });
1995 quotient = bigfield(witness_t(ctx, fr(quotient_512.slice(0, NUM_LIMB_BITS * 2).lo)),
1996 witness_t(ctx, fr(quotient_512.slice(NUM_LIMB_BITS * 2, NUM_LIMB_BITS * 4).lo)),
1997 false,
1998 num_quotient_bits);
1999 unsafe_evaluate_multiply_add(diff, { one() }, {}, quotient, { zero() });
2000
2001 // Restore tags
2002 set_origin_tag(original_tag);
2003 other.set_origin_tag(other_original_tag);
2004 }
2005}
2006
2007// construct a proof that points are different mod p, when they are different mod r
2008// WARNING: This method doesn't have perfect completeness - for points equal mod r (or with certain difference kp
2009// mod r) but different mod p, you can't construct a proof. The chances of an honest prover running afoul of this
2010// condition are extremely small (TODO: compute probability) Note also that the number of constraints depends on how
2011// much the values have overflown beyond p e.g. due to an addition chain The function is based on the following.
2012// Suppose a-b = 0 mod p. Then a-b = k*p for k in a range [-R,L] for largest L and R such that L*p>= a, R*p>=b.
2013// And also a-b = k*p mod r for such k. Thus we can verify a-b is non-zero mod p by taking the product of such values
2014// (a-b-kp) and showing it's non-zero mod r
2015template <typename Builder, typename T>
2016void bigfield<Builder, T>::assert_is_not_equal(const bigfield& other, std::string const& msg) const
2017{
2018 // Why would we use this for 2 constants? Turns out, in biggroup
2019 const auto get_overload_count = [target_modulus = modulus_u512](const uint512_t& maximum_value) {
2020 uint512_t target = target_modulus;
2021 size_t overload_count = 0;
2022 while (target <= maximum_value) {
2023 ++overload_count;
2024 target += target_modulus;
2025 }
2026 return overload_count;
2027 };
2028 const size_t lhs_overload_count = get_overload_count(get_maximum_value());
2029 const size_t rhs_overload_count = get_overload_count(other.get_maximum_value());
2030
2031 // if (a == b) then (a == b mod n)
2032 // to save gates, we only check that (a == b mod n)
2033
2034 // if numeric val of a = a' + p.q
2035 // we want to check (a' + p.q == b mod n)
2036 const field_t<Builder> base_diff = prime_basis_limb - other.prime_basis_limb;
2037 auto diff = base_diff;
2038 field_t<Builder> prime_basis(get_context(), modulus);
2039 field_t<Builder> prime_basis_accumulator = prime_basis;
2040 // Each loop iteration adds 1 gate
2041 // (prime_basis and prime_basis accumulator are constant so only the * operator adds a gate)
2042 for (size_t i = 0; i < lhs_overload_count; ++i) {
2043 diff = diff * (base_diff - prime_basis_accumulator);
2044 prime_basis_accumulator += prime_basis;
2045 }
2046 prime_basis_accumulator = prime_basis;
2047 for (size_t i = 0; i < rhs_overload_count; ++i) {
2048 diff = diff * (base_diff + prime_basis_accumulator);
2049 prime_basis_accumulator += prime_basis;
2050 }
2051 diff.assert_is_not_zero(msg);
2052}
2053
2054// We reduce an element's mod 2^t representation (t=4*NUM_LIMB_BITS) to size 2^s for smallest s with 2^s>p
2055// This is much cheaper than actually reducing mod p and suffices for addition chains (where we just need not to
2056// overflow 2^t) We also reduce any "spillage" inside the first 3 limbs, so that their range is NUM_LIMB_BITS and
2057// not larger
2058template <typename Builder, typename T> void bigfield<Builder, T>::self_reduce() const
2059{
2060 // Warning: this assumes we have run circuit construction at least once in debug mode where large non reduced
2061 // constants are disallowed via ASSERT
2062 if (is_constant()) {
2063 return;
2064 }
2065 OriginTag new_tag = get_origin_tag();
2066 const auto [quotient_value, remainder_value] = get_value().divmod(target_basis.modulus);
2067
2068 bigfield quotient(context);
2069
2070 uint512_t maximum_quotient_size = get_maximum_value() / target_basis.modulus;
2071 uint64_t maximum_quotient_bits = maximum_quotient_size.get_msb() + 1;
2072 if ((maximum_quotient_bits & 1ULL) == 1ULL) {
2073 ++maximum_quotient_bits;
2074 }
2075
2076 BB_ASSERT_LTE(maximum_quotient_bits, NUM_LIMB_BITS);
2077 uint32_t quotient_limb_index = context->add_variable(bb::fr(quotient_value.lo));
2078 field_t<Builder> quotient_limb = field_t<Builder>::from_witness_index(context, quotient_limb_index);
2079 context->decompose_into_default_range(quotient_limb.get_normalized_witness_index(),
2080 static_cast<size_t>(maximum_quotient_bits));
2081
2082 BB_ASSERT_LT((uint1024_t(1) << maximum_quotient_bits) * uint1024_t(modulus_u512) + DEFAULT_MAXIMUM_REMAINDER,
2083 get_maximum_crt_product());
2084 quotient.binary_basis_limbs[0] = Limb(quotient_limb, uint256_t(1) << maximum_quotient_bits);
2088 quotient.prime_basis_limb = quotient_limb;
2089 // this constructor with can_overflow=false will enforce remainder of size<2^s
2090 bigfield remainder = bigfield(
2091 witness_t(context, fr(remainder_value.slice(0, NUM_LIMB_BITS * 2).lo)),
2092 witness_t(context, fr(remainder_value.slice(NUM_LIMB_BITS * 2, NUM_LIMB_BITS * 3 + NUM_LAST_LIMB_BITS).lo)));
2093
2094 unsafe_evaluate_multiply_add(*this, one(), {}, quotient, { remainder });
2095 binary_basis_limbs[0] =
2096 remainder.binary_basis_limbs[0]; // Combination of const method and mutable variables is good practice?
2097 binary_basis_limbs[1] = remainder.binary_basis_limbs[1];
2098 binary_basis_limbs[2] = remainder.binary_basis_limbs[2];
2099 binary_basis_limbs[3] = remainder.binary_basis_limbs[3];
2100 prime_basis_limb = remainder.prime_basis_limb;
2101 set_origin_tag(new_tag);
2102} // namespace stdlib
2103
2104template <typename Builder, typename T>
2106 const bigfield& input_to_mul,
2107 const std::vector<bigfield>& to_add,
2108 const bigfield& input_quotient,
2109 const std::vector<bigfield>& input_remainders)
2110{
2111
2112 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
2113 BB_ASSERT_LTE(input_remainders.size(), MAXIMUM_SUMMAND_COUNT);
2114 // Sanity checks
2115 input_left.sanity_check();
2116 input_to_mul.sanity_check();
2117 input_quotient.sanity_check();
2118 for (auto& el : to_add) {
2119 el.sanity_check();
2120 }
2121 for (auto& el : input_remainders) {
2122 el.sanity_check();
2123 }
2124
2125 std::vector<bigfield> remainders(input_remainders);
2126
2127 bigfield left = input_left;
2128 bigfield to_mul = input_to_mul;
2129 bigfield quotient = input_quotient;
2130
2131 // Either of the multiplicand must be a witness.
2132 ASSERT(!left.is_constant() || !to_mul.is_constant());
2133 Builder* ctx = left.context ? left.context : to_mul.context;
2134
2135 // Compute the maximum value of the product of the two inputs: max(a * b)
2136 uint512_t max_ab_lo(0);
2137 uint512_t max_ab_hi(0);
2138 std::tie(max_ab_lo, max_ab_hi) = compute_partial_schoolbook_multiplication(left.get_binary_basis_limb_maximums(),
2140
2141 // Compute the maximum value of the product of the quotient and neg_modulus: max(q * p')
2142 uint512_t max_q_neg_p_lo(0);
2143 uint512_t max_q_neg_p_hi(0);
2144 std::tie(max_q_neg_p_lo, max_q_neg_p_hi) = compute_partial_schoolbook_multiplication(
2145 neg_modulus_mod_binary_basis_limbs_u256, quotient.get_binary_basis_limb_maximums());
2146
2147 // Compute the maximum value that needs to be borrowed from the hi limbs to the lo limb.
2148 // Check the README for the explanation of the borrow.
2149 uint256_t max_remainders_lo(0);
2150 for (const auto& remainder : input_remainders) {
2151 max_remainders_lo += remainder.binary_basis_limbs[0].maximum_value +
2152 (remainder.binary_basis_limbs[1].maximum_value << NUM_LIMB_BITS);
2153 }
2154
2155 // While performing the subtraction of remainder r as:
2156 //
2157 // (a * b + q * p') - (r)
2158 //
2159 // we want to ensure that the lower limbs do not underflow. So we add a borrow value
2160 // to the lower limbs and subtract it from the higher limbs. Naturally, such a borrow value
2161 // must be a multiple of 2^2L (where L = NUM_LIMB_BITS). Let borrow_lo_value be the value
2162 // borrowed from the hi limbs, then we must have:
2163 //
2164 // borrow_lo_value * 2^(2L) >= max_remainders_lo
2165 //
2166 // Thus, we can compute the minimum borrow_lo_value as:
2167 //
2168 // borrow_lo_value = ⌈ max_remainders_lo / 2^(2L) ⌉
2169 //
2170 uint256_t borrow_lo_value =
2171 (max_remainders_lo + ((uint256_t(1) << (2 * NUM_LIMB_BITS)) - 1)) >> (2 * NUM_LIMB_BITS);
2172 field_t<Builder> borrow_lo(ctx, bb::fr(borrow_lo_value));
2173
2174 uint512_t max_a0(0);
2175 uint512_t max_a1(0);
2176 for (size_t i = 0; i < to_add.size(); ++i) {
2177 max_a0 += to_add[i].binary_basis_limbs[0].maximum_value +
2178 (to_add[i].binary_basis_limbs[1].maximum_value << NUM_LIMB_BITS);
2179 max_a1 += to_add[i].binary_basis_limbs[2].maximum_value +
2180 (to_add[i].binary_basis_limbs[3].maximum_value << NUM_LIMB_BITS);
2181 }
2182 const uint512_t max_lo = max_ab_lo + max_q_neg_p_lo + max_remainders_lo + max_a0;
2183 const uint512_t max_lo_carry = max_lo >> (2 * NUM_LIMB_BITS);
2184 const uint512_t max_hi = max_ab_hi + max_q_neg_p_hi + max_a1 + max_lo_carry;
2185
2186 uint64_t max_lo_bits = (max_lo.get_msb() + 1);
2187 uint64_t max_hi_bits = max_hi.get_msb() + 1;
2188
2189 ASSERT(max_lo_bits > (2 * NUM_LIMB_BITS));
2190 ASSERT(max_hi_bits > (2 * NUM_LIMB_BITS));
2191
2192 uint64_t carry_lo_msb = max_lo_bits - (2 * NUM_LIMB_BITS);
2193 uint64_t carry_hi_msb = max_hi_bits - (2 * NUM_LIMB_BITS);
2194
2195 if (max_lo_bits < (2 * NUM_LIMB_BITS)) {
2196 carry_lo_msb = 0;
2197 }
2198 if (max_hi_bits < (2 * NUM_LIMB_BITS)) {
2199 carry_hi_msb = 0;
2200 }
2201
2202 // The custom bigfield multiplication gate requires inputs are witnesses.
2203 // If we're using constant values, instantiate them as circuit variables
2204 //
2205 // Explanation:
2206 // The bigfield multiplication gate expects witnesses and disallows circuit constants
2207 // because allowing circuit constants would lead to complex circuit logic to support
2208 // different combinations of constant and witness inputs. Particularly, bigfield multiplication
2209 // gate enforces constraints of the form: a * b - q * p + r = 0, where:
2210 //
2211 // input left a = (a3 || a2 || a1 || a0)
2212 // input right b = (b3 || b2 || b1 || b0)
2213 // quotient q = (q3 || q2 || q1 || q0)
2214 // remainder r = (r3 || r2 || r1 || r0)
2215 //
2216 // | a1 | b1 | r0 | lo_0 | <-- product gate 1: check lo_0
2217 // | a0 | b0 | a3 | b3 |
2218 // | a2 | b2 | r3 | hi_0 |
2219 // | a1 | b1 | r2 | hi_1 |
2220 //
2221 // Example constaint: lo_0 = (a1 * b0 + a0 * b1) * 2^b + (a0 * b0) - r0
2222 // ==> w4 = (w1 * w'2 + w'1 * w2) * 2^b + (w'1 * w'2) - w3
2223 //
2224 // If a, b both are witnesses, this special gate performs 3 field multiplications per gate.
2225 // If b was a constant, then we would need to no field multiplications, but instead update the
2226 // the limbs of a with multiplicative and additive constants. This just makes the circuit logic
2227 // more complex, so we disallow constants. If there are constants, we convert them to fixed witnesses (at the
2228 // expense of 1 extra gate per constant).
2229 //
2230 const auto convert_constant_to_fixed_witness = [ctx](const bigfield& input) {
2231 bigfield output(input);
2232 output.prime_basis_limb =
2233 field_t<Builder>::from_witness_index(ctx, ctx->put_constant_variable(input.prime_basis_limb.get_value()));
2235 ctx, ctx->put_constant_variable(input.binary_basis_limbs[0].element.get_value()));
2237 ctx, ctx->put_constant_variable(input.binary_basis_limbs[1].element.get_value()));
2239 ctx, ctx->put_constant_variable(input.binary_basis_limbs[2].element.get_value()));
2241 ctx, ctx->put_constant_variable(input.binary_basis_limbs[3].element.get_value()));
2242 output.context = ctx;
2243 return output;
2244 };
2245 if (left.is_constant()) {
2246 left = convert_constant_to_fixed_witness(left);
2247 }
2248 if (to_mul.is_constant()) {
2249 to_mul = convert_constant_to_fixed_witness(to_mul);
2250 }
2251 if (quotient.is_constant()) {
2252 quotient = convert_constant_to_fixed_witness(quotient);
2253 }
2254 if (remainders[0].is_constant()) {
2255 remainders[0] = convert_constant_to_fixed_witness(remainders[0]);
2256 }
2257
2258 std::vector<field_t<Builder>> limb_0_accumulator{ remainders[0].binary_basis_limbs[0].element };
2259 std::vector<field_t<Builder>> limb_2_accumulator{ remainders[0].binary_basis_limbs[2].element };
2260 std::vector<field_t<Builder>> prime_limb_accumulator{ remainders[0].prime_basis_limb };
2261 for (size_t i = 1; i < remainders.size(); ++i) {
2262 limb_0_accumulator.emplace_back(remainders[i].binary_basis_limbs[0].element);
2263 limb_0_accumulator.emplace_back(remainders[i].binary_basis_limbs[1].element * shift_1);
2264 limb_2_accumulator.emplace_back(remainders[i].binary_basis_limbs[2].element);
2265 limb_2_accumulator.emplace_back(remainders[i].binary_basis_limbs[3].element * shift_1);
2266 prime_limb_accumulator.emplace_back(remainders[i].prime_basis_limb);
2267 }
2268 for (const auto& add : to_add) {
2269 limb_0_accumulator.emplace_back(-add.binary_basis_limbs[0].element);
2270 limb_0_accumulator.emplace_back(-add.binary_basis_limbs[1].element * shift_1);
2271 limb_2_accumulator.emplace_back(-add.binary_basis_limbs[2].element);
2272 limb_2_accumulator.emplace_back(-add.binary_basis_limbs[3].element * shift_1);
2273 prime_limb_accumulator.emplace_back(-add.prime_basis_limb);
2274 }
2275
2276 const auto& t0 = remainders[0].binary_basis_limbs[1].element;
2277 const auto& t1 = remainders[0].binary_basis_limbs[3].element;
2278 bool needs_normalize = (t0.additive_constant != 0 || t0.multiplicative_constant != 1);
2279 needs_normalize = needs_normalize || (t1.additive_constant != 0 || t1.multiplicative_constant != 1);
2280
2281 if (needs_normalize) {
2282 limb_0_accumulator.emplace_back(remainders[0].binary_basis_limbs[1].element * shift_1);
2283 limb_2_accumulator.emplace_back(remainders[0].binary_basis_limbs[3].element * shift_1);
2284 }
2285
2286 std::array<field_t<Builder>, NUM_LIMBS> remainder_limbs{
2287 field_t<Builder>::accumulate(limb_0_accumulator),
2288 needs_normalize ? field_t<Builder>::from_witness_index(ctx, ctx->zero_idx())
2289 : remainders[0].binary_basis_limbs[1].element,
2290 field_t<Builder>::accumulate(limb_2_accumulator),
2291 needs_normalize ? field_t<Builder>::from_witness_index(ctx, ctx->zero_idx())
2292 : remainders[0].binary_basis_limbs[3].element,
2293 };
2294 field_t<Builder> remainder_prime_limb = field_t<Builder>::accumulate(prime_limb_accumulator);
2295
2300 {
2301 remainder_limbs[0].get_normalized_witness_index(),
2302 remainder_limbs[1].get_normalized_witness_index(),
2303 remainder_limbs[2].get_normalized_witness_index(),
2304 remainder_limbs[3].get_normalized_witness_index(),
2305 },
2306 { neg_modulus_mod_binary_basis_limbs[0],
2307 neg_modulus_mod_binary_basis_limbs[1],
2308 neg_modulus_mod_binary_basis_limbs[2],
2309 neg_modulus_mod_binary_basis_limbs[3] },
2310 };
2311
2312 // N.B. this method DOES NOT evaluate the prime field component of the non-native field mul
2313 const auto [lo_idx, hi_idx] = ctx->evaluate_non_native_field_multiplication(witnesses);
2314
2316 to_mul.prime_basis_limb,
2317 quotient.prime_basis_limb * negative_prime_modulus_mod_native_basis,
2318 -remainder_prime_limb,
2319 "bigfield: prime limb identity failed");
2320
2321 field_t lo = field_t<Builder>::from_witness_index(ctx, lo_idx) + borrow_lo;
2323
2324 // if both the hi and lo output limbs have less than 70 bits, we can use our custom
2325 // limb accumulation gate (accumulates 2 field elements, each composed of 5 14-bit limbs, in 3 gates)
2326 if (carry_lo_msb <= 70 && carry_hi_msb <= 70) {
2327 ctx->range_constrain_two_limbs(hi.get_normalized_witness_index(),
2329 static_cast<size_t>(carry_hi_msb),
2330 static_cast<size_t>(carry_lo_msb),
2331 "bigfield::unsafe_evaluate_multiply_add: carries too large");
2332 } else {
2333 hi.create_range_constraint(static_cast<size_t>(carry_hi_msb), "bigfield: carry_hi too large");
2334 lo.create_range_constraint(static_cast<size_t>(carry_lo_msb), "bigfield: carry_lo too large");
2335 }
2336}
2337
2338template <typename Builder, typename T>
2340 const std::vector<bigfield>& input_right,
2341 const std::vector<bigfield>& to_add,
2342 const bigfield& input_quotient,
2343 const std::vector<bigfield>& input_remainders)
2344{
2345 BB_ASSERT_EQ(input_left.size(), input_right.size());
2346 BB_ASSERT_LTE(input_left.size(), MAXIMUM_SUMMAND_COUNT);
2347 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
2348 BB_ASSERT_LTE(input_remainders.size(), MAXIMUM_SUMMAND_COUNT);
2349
2350 // Sanity checks
2351 bool is_left_constant = true;
2352 for (auto& el : input_left) {
2353 el.sanity_check();
2354 is_left_constant &= el.is_constant();
2355 }
2356 bool is_right_constant = true;
2357 for (auto& el : input_right) {
2358 el.sanity_check();
2359 is_right_constant &= el.is_constant();
2360 }
2361 for (auto& el : to_add) {
2362 el.sanity_check();
2363 }
2364 input_quotient.sanity_check();
2365 for (auto& el : input_remainders) {
2366 el.sanity_check();
2367 }
2368
2369 // We must have at least one left or right multiplicand as witnesses.
2370 ASSERT(!is_left_constant || !is_right_constant);
2371
2372 std::vector<bigfield> remainders(input_remainders);
2373 std::vector<bigfield> left(input_left);
2374 std::vector<bigfield> right(input_right);
2375 bigfield quotient = input_quotient;
2376 const size_t num_multiplications = input_left.size();
2377
2378 // Fetch the context
2379 Builder* ctx = nullptr;
2380 for (const auto& el : input_left) {
2381 if (el.context) {
2382 ctx = el.context;
2383 break;
2384 }
2385 }
2386 if (ctx == nullptr) {
2387 for (const auto& el : input_right) {
2388 if (el.context) {
2389 ctx = el.context;
2390 break;
2391 }
2392 }
2393 }
2394 ASSERT(ctx != nullptr);
2395
2402 uint512_t max_lo = 0;
2403 uint512_t max_hi = 0;
2404
2405 // Compute the maximum value that needs to be borrowed from the hi limbs to the lo limb.
2406 // Check the README for the explanation of the borrow.
2407 uint256_t max_remainders_lo(0);
2408 for (const auto& remainder : input_remainders) {
2409 max_remainders_lo += remainder.binary_basis_limbs[0].maximum_value +
2410 (remainder.binary_basis_limbs[1].maximum_value << NUM_LIMB_BITS);
2411 }
2412
2413 // While performing the subtraction of (sum of) remainder(s) as:
2414 //
2415 // (Σi ai * bi + q * p') - (Σj rj)
2416 //
2417 // we want to ensure that the lower limbs do not underflow. So we add a borrow value
2418 // to the lower limbs and subtract it from the higher limbs. Naturally, such a borrow value
2419 // must be a multiple of 2^2L (where L = NUM_LIMB_BITS). Let borrow_lo_value be the value
2420 // borrowed from the hi limbs, then we must have:
2421 //
2422 // borrow_lo_value * 2^(2L) >= max_remainders_lo
2423 //
2424 // Thus, we can compute the minimum borrow_lo_value as:
2425 //
2426 // borrow_lo_value = ⌈ max_remainders_lo / 2^(2L) ⌉
2427 //
2428 uint256_t borrow_lo_value =
2429 (max_remainders_lo + ((uint256_t(1) << (2 * NUM_LIMB_BITS)) - 1)) >> (2 * NUM_LIMB_BITS);
2430 field_t<Builder> borrow_lo(ctx, bb::fr(borrow_lo_value));
2431
2432 // Compute the maximum value of the quotient times modulus.
2433 const auto [max_q_neg_p_lo, max_q_neg_p_hi] = compute_partial_schoolbook_multiplication(
2434 neg_modulus_mod_binary_basis_limbs_u256, quotient.get_binary_basis_limb_maximums());
2435
2436 // update max_lo, max_hi with quotient limb product terms.
2437 max_lo += max_q_neg_p_lo + max_remainders_lo;
2438 max_hi += max_q_neg_p_hi;
2439
2440 // Compute maximum value of addition terms in `to_add` and add to max_lo, max_hi
2441 uint512_t max_a0(0);
2442 uint512_t max_a1(0);
2443 for (size_t i = 0; i < to_add.size(); ++i) {
2444 max_a0 += to_add[i].binary_basis_limbs[0].maximum_value +
2445 (to_add[i].binary_basis_limbs[1].maximum_value << NUM_LIMB_BITS);
2446 max_a1 += to_add[i].binary_basis_limbs[2].maximum_value +
2447 (to_add[i].binary_basis_limbs[3].maximum_value << NUM_LIMB_BITS);
2448 }
2449 max_lo += max_a0;
2450 max_hi += max_a1;
2451
2452 // Compute the maximum value of our multiplication products and add to max_lo, max_hi
2453 for (size_t i = 0; i < num_multiplications; ++i) {
2454 const auto [product_lo, product_hi] = compute_partial_schoolbook_multiplication(
2455 left[i].get_binary_basis_limb_maximums(), right[i].get_binary_basis_limb_maximums());
2456 max_lo += product_lo;
2457 max_hi += product_hi;
2458 }
2459
2460 const uint512_t max_lo_carry = max_lo >> (2 * NUM_LIMB_BITS);
2461 max_hi += max_lo_carry;
2462 // Compute the maximum number of bits in `max_lo` and `max_hi` - this defines the range constraint values we
2463 // will need to apply to validate our product
2464 uint64_t max_lo_bits = (max_lo.get_msb() + 1);
2465 uint64_t max_hi_bits = max_hi.get_msb() + 1;
2466
2467 // The custom bigfield multiplication gate requires inputs are witnesses.
2468 // If we're using constant values, instantiate them as circuit variables
2469 //
2470 // Explanation:
2471 // The bigfield multiplication gate expects witnesses and disallows circuit constants
2472 // because allowing circuit constants would lead to complex circuit logic to support
2473 // different combinations of constant and witness inputs. Particularly, bigfield multiplication
2474 // gate enforces constraints of the form: a * b - q * p + r = 0, where:
2475 //
2476 // input left a = (a3 || a2 || a1 || a0)
2477 // input right b = (b3 || b2 || b1 || b0)
2478 // quotient q = (q3 || q2 || q1 || q0)
2479 // remainder r = (r3 || r2 || r1 || r0)
2480 //
2481 // | a1 | b1 | r0 | lo_0 | <-- product gate 1: check lo_0
2482 // | a0 | b0 | a3 | b3 |
2483 // | a2 | b2 | r3 | hi_0 |
2484 // | a1 | b1 | r2 | hi_1 |
2485 //
2486 // Example constaint: lo_0 = (a1 * b0 + a0 * b1) * 2^b + (a0 * b0) - r0
2487 // ==> w4 = (w1 * w'2 + w'1 * w2) * 2^b + (w'1 * w'2) - w3
2488 //
2489 // If a, b both are witnesses, this special gate performs 3 field multiplications per gate.
2490 // If b was a constant, then we would need to no field multiplications, but instead update the
2491 // the limbs of a with multiplicative and additive constants. This just makes the circuit logic
2492 // more complex, so we disallow constants. If there are constants, we convert them to fixed witnesses (at the
2493 // expense of 1 extra gate per constant).
2494 //
2495 const auto convert_constant_to_fixed_witness = [ctx](const bigfield& input) {
2496 ASSERT(input.is_constant());
2497 bigfield output(input);
2498 output.prime_basis_limb =
2499 field_t<Builder>::from_witness_index(ctx, ctx->put_constant_variable(input.prime_basis_limb.get_value()));
2501 ctx, ctx->put_constant_variable(input.binary_basis_limbs[0].element.get_value()));
2503 ctx, ctx->put_constant_variable(input.binary_basis_limbs[1].element.get_value()));
2505 ctx, ctx->put_constant_variable(input.binary_basis_limbs[2].element.get_value()));
2507 ctx, ctx->put_constant_variable(input.binary_basis_limbs[3].element.get_value()));
2508 output.context = ctx;
2509 return output;
2510 };
2511
2512 // evalaute a nnf mul and add into existing lohi output for our extra product terms
2513 // we need to add the result of (left_b * right_b) into lo_1_idx and hi_1_idx
2514 // our custom gate evaluates: ((a * b) + (q * neg_modulus) - r) / 2^{136} = lo + hi * 2^{136}
2515 // where q is a 'quotient' bigfield and neg_modulus is defined by selector polynomial values
2516 // The custom gate costs 7 constraints, which is cheaper than computing `a * b` using multiplication +
2517 // addition gates But....we want to obtain `left_a * right_b + lo_1 + hi_1 * 2^{136} = lo + hi * 2^{136}` If
2518 // we set `neg_modulus = [2^{136}, 0, 0, 0]` and `q = [lo_1, 0, hi_1, 0]`, then we will add `lo_1` into
2519 // `lo`, and `lo_1/2^{136} + hi_1` into `hi`. we can then subtract off `lo_1/2^{136}` from `hi`, by setting
2520 // `r = [0, 0, lo_1, 0]` This saves us 2 addition gates as we don't have to add together the outputs of two
2521 // calls to `evaluate_non_native_field_multiplication`
2522 std::vector<field_t<Builder>> limb_0_accumulator;
2523 std::vector<field_t<Builder>> limb_2_accumulator;
2524 std::vector<field_t<Builder>> prime_limb_accumulator;
2525
2526 for (size_t i = 0; i < num_multiplications; ++i) {
2527 if (left[i].is_constant()) {
2528 left[i] = convert_constant_to_fixed_witness(left[i]);
2529 }
2530 if (right[i].is_constant()) {
2531 right[i] = convert_constant_to_fixed_witness(right[i]);
2532 }
2533
2534 if (i > 0) {
2536 left[i].get_binary_basis_limb_witness_indices(),
2537 right[i].get_binary_basis_limb_witness_indices(),
2538 };
2539
2540 const auto [lo_2_idx, hi_2_idx] = ctx->queue_partial_non_native_field_multiplication(mul_witnesses);
2541
2544
2545 limb_0_accumulator.emplace_back(-lo_2);
2546 limb_2_accumulator.emplace_back(-hi_2);
2547 prime_limb_accumulator.emplace_back(-(left[i].prime_basis_limb * right[i].prime_basis_limb));
2548 }
2549 }
2550 if (quotient.is_constant()) {
2551 quotient = convert_constant_to_fixed_witness(quotient);
2552 }
2553
2554 bool no_remainders = remainders.empty();
2555 if (!no_remainders) {
2556 limb_0_accumulator.emplace_back(remainders[0].binary_basis_limbs[0].element);
2557 limb_2_accumulator.emplace_back(remainders[0].binary_basis_limbs[2].element);
2558 prime_limb_accumulator.emplace_back(remainders[0].prime_basis_limb);
2559 }
2560 for (size_t i = 1; i < remainders.size(); ++i) {
2561 limb_0_accumulator.emplace_back(remainders[i].binary_basis_limbs[0].element);
2562 limb_0_accumulator.emplace_back(remainders[i].binary_basis_limbs[1].element * shift_1);
2563 limb_2_accumulator.emplace_back(remainders[i].binary_basis_limbs[2].element);
2564 limb_2_accumulator.emplace_back(remainders[i].binary_basis_limbs[3].element * shift_1);
2565 prime_limb_accumulator.emplace_back(remainders[i].prime_basis_limb);
2566 }
2567 for (const auto& add : to_add) {
2568 limb_0_accumulator.emplace_back(-add.binary_basis_limbs[0].element);
2569 limb_0_accumulator.emplace_back(-add.binary_basis_limbs[1].element * shift_1);
2570 limb_2_accumulator.emplace_back(-add.binary_basis_limbs[2].element);
2571 limb_2_accumulator.emplace_back(-add.binary_basis_limbs[3].element * shift_1);
2572 prime_limb_accumulator.emplace_back(-add.prime_basis_limb);
2573 }
2574
2575 field_t<Builder> accumulated_lo = field_t<Builder>::accumulate(limb_0_accumulator);
2576 field_t<Builder> accumulated_hi = field_t<Builder>::accumulate(limb_2_accumulator);
2577 if (accumulated_lo.is_constant()) {
2578 accumulated_lo =
2579 field_t<Builder>::from_witness_index(ctx, ctx->put_constant_variable(accumulated_lo.get_value()));
2580 }
2581 if (accumulated_hi.is_constant()) {
2582 accumulated_hi =
2583 field_t<Builder>::from_witness_index(ctx, ctx->put_constant_variable(accumulated_hi.get_value()));
2584 }
2585 field_t<Builder> remainder1 = no_remainders ? field_t<Builder>::from_witness_index(ctx, ctx->zero_idx())
2586 : remainders[0].binary_basis_limbs[1].element;
2587 if (remainder1.is_constant()) {
2588 remainder1 = field_t<Builder>::from_witness_index(ctx, ctx->put_constant_variable(remainder1.get_value()));
2589 }
2590 field_t<Builder> remainder3 = no_remainders ? field_t<Builder>::from_witness_index(ctx, ctx->zero_idx())
2591 : remainders[0].binary_basis_limbs[3].element;
2592 if (remainder3.is_constant()) {
2593 remainder3 = field_t<Builder>::from_witness_index(ctx, ctx->put_constant_variable(remainder3.get_value()));
2594 }
2595 std::array<field_t<Builder>, NUM_LIMBS> remainder_limbs{
2596 accumulated_lo,
2597 remainder1,
2598 accumulated_hi,
2599 remainder3,
2600 };
2601 field_t<Builder> remainder_prime_limb = field_t<Builder>::accumulate(prime_limb_accumulator);
2602
2604 left[0].get_binary_basis_limb_witness_indices(),
2605 right[0].get_binary_basis_limb_witness_indices(),
2607 {
2608 remainder_limbs[0].get_normalized_witness_index(),
2609 remainder_limbs[1].get_normalized_witness_index(),
2610 remainder_limbs[2].get_normalized_witness_index(),
2611 remainder_limbs[3].get_normalized_witness_index(),
2612 },
2613 { neg_modulus_mod_binary_basis_limbs[0],
2614 neg_modulus_mod_binary_basis_limbs[1],
2615 neg_modulus_mod_binary_basis_limbs[2],
2616 neg_modulus_mod_binary_basis_limbs[3] },
2617 };
2618
2619 const auto [lo_1_idx, hi_1_idx] = ctx->evaluate_non_native_field_multiplication(witnesses);
2620
2621 field_t<Builder>::evaluate_polynomial_identity(left[0].prime_basis_limb,
2622 right[0].prime_basis_limb,
2623 quotient.prime_basis_limb * negative_prime_modulus_mod_native_basis,
2624 -remainder_prime_limb,
2625 "bigfield: prime limb identity failed");
2626
2627 field_t lo = field_t<Builder>::from_witness_index(ctx, lo_1_idx) + borrow_lo;
2629
2630 ASSERT(max_lo_bits > (2 * NUM_LIMB_BITS));
2631 ASSERT(max_hi_bits > (2 * NUM_LIMB_BITS));
2632
2633 uint64_t carry_lo_msb = max_lo_bits - (2 * NUM_LIMB_BITS);
2634 uint64_t carry_hi_msb = max_hi_bits - (2 * NUM_LIMB_BITS);
2635
2636 if (max_lo_bits < (2 * NUM_LIMB_BITS)) {
2637 carry_lo_msb = 0;
2638 }
2639 if (max_hi_bits < (2 * NUM_LIMB_BITS)) {
2640 carry_hi_msb = 0;
2641 }
2642
2643 // if both the hi and lo output limbs have less than 70 bits, we can use our custom
2644 // limb accumulation gate (accumulates 2 field elements, each composed of 5 14-bit limbs, in 3 gates)
2645 if (carry_lo_msb <= 70 && carry_hi_msb <= 70) {
2646 ctx->range_constrain_two_limbs(hi.get_normalized_witness_index(),
2648 static_cast<size_t>(carry_hi_msb),
2649 static_cast<size_t>(carry_lo_msb),
2650 "bigfield::unsafe_evaluate_multiply_add: carries too large");
2651 } else {
2652 hi.create_range_constraint(static_cast<size_t>(carry_hi_msb), "bigfield: carry_hi too large");
2653 lo.create_range_constraint(static_cast<size_t>(carry_lo_msb), "bigfield: carry_lo too large");
2654 }
2655}
2656
2657template <typename Builder, typename T>
2659 const std::vector<bigfield>& to_add,
2660 const bigfield& quotient,
2661 const bigfield& remainder)
2662{
2663 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
2664
2665 // Suppose input is:
2666 // x = (x3 || x2 || x1 || x0)
2667 //
2668 // x * x = (x0 * x0) +
2669 // (2 • x0 * x1) • 2^b +
2670 // (2 • x0 * x2 + x1 * x1) • 2^{2b} +
2671 // (2 • x0 * x3 + 2 • x1 * x2) • 2^{3b}.
2672 //
2673 // We need 6 multiplications to compute the above, which can be computed using two custom multiplication gates.
2674 // Since each custom bigfield gate can compute 3, we can compute the above using 2 custom multiplication gates
2675 // (as against 3 gates if we used the current bigfield multiplication gate).
2676 // We however avoid this optimization for now and end up using the existing bigfield multiplication gate.
2677 //
2678 unsafe_evaluate_multiply_add(left, left, to_add, quotient, { remainder });
2679}
2680
2681template <typename Builder, typename T>
2683 const bigfield& a, const bigfield& b, const std::vector<bigfield>& to_add)
2684{
2685 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
2686
2688 for (const auto& add_element : to_add) {
2689 add_element.reduction_check();
2690 add_values += add_element.get_value();
2691 }
2692
2693 const uint1024_t left(a.get_value());
2694 const uint1024_t right(b.get_value());
2695 const uint1024_t add_right(add_values);
2696 const uint1024_t modulus(target_basis.modulus);
2697
2698 const auto [quotient_1024, remainder_1024] = (left * right + add_right).divmod(modulus);
2699
2700 return { quotient_1024.lo, remainder_1024.lo };
2701}
2702
2703template <typename Builder, typename T>
2705 const std::vector<uint512_t>& bs,
2706 const std::vector<uint512_t>& to_add)
2707{
2708 BB_ASSERT_EQ(as.size(), bs.size());
2709 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
2710
2712 for (const auto& add_element : to_add) {
2713 add_values += add_element;
2714 }
2715 uint1024_t product_sum(0);
2716 for (size_t i = 0; i < as.size(); i++) {
2717 product_sum += uint1024_t(as[i]) * uint1024_t(bs[i]);
2718 }
2719 const uint1024_t add_right(add_values);
2720 const uint1024_t modulus(target_basis.modulus);
2721
2722 const auto [quotient_1024, remainder_1024] = (product_sum + add_right).divmod(modulus);
2723
2724 return quotient_1024.lo;
2725}
2726template <typename Builder, typename T>
2728 const std::vector<uint512_t>& bs_max,
2729 const std::vector<bigfield>& to_add,
2730 const std::vector<uint1024_t>& remainders_max)
2731{
2732 BB_ASSERT_EQ(as_max.size(), bs_max.size());
2733
2734 BB_ASSERT_LTE(to_add.size(), MAXIMUM_SUMMAND_COUNT);
2735 BB_ASSERT_LTE(as_max.size(), MAXIMUM_SUMMAND_COUNT);
2736 BB_ASSERT_LTE(remainders_max.size(), MAXIMUM_SUMMAND_COUNT);
2737
2738 // Check if the product sum can overflow CRT modulus
2739 if (mul_product_overflows_crt_modulus(as_max, bs_max, to_add)) {
2740 return std::pair<bool, size_t>(true, 0);
2741 }
2742 const size_t num_quotient_bits = get_quotient_max_bits(remainders_max);
2743 std::vector<uint512_t> to_add_max;
2744 for (auto& added_element : to_add) {
2745 to_add_max.push_back(added_element.get_maximum_value());
2746 }
2747 // Get maximum value of quotient
2748 const uint512_t maximum_quotient = compute_maximum_quotient_value(as_max, bs_max, to_add_max);
2749
2750 // Check if the quotient can fit into the range proof
2751 if (maximum_quotient >= (uint512_t(1) << num_quotient_bits)) {
2752 return std::pair<bool, size_t>(true, 0);
2753 }
2754 return std::pair<bool, size_t>(false, num_quotient_bits);
2755}
2756
2757template <typename Builder, typename T>
2760{
2761 const uint512_t b0_inner = (a_limbs[1] * b_limbs[0]);
2762 const uint512_t b1_inner = (a_limbs[0] * b_limbs[1]);
2763 const uint512_t c0_inner = (a_limbs[1] * b_limbs[1]);
2764 const uint512_t c1_inner = (a_limbs[2] * b_limbs[0]);
2765 const uint512_t c2_inner = (a_limbs[0] * b_limbs[2]);
2766 const uint512_t d0_inner = (a_limbs[3] * b_limbs[0]);
2767 const uint512_t d1_inner = (a_limbs[2] * b_limbs[1]);
2768 const uint512_t d2_inner = (a_limbs[1] * b_limbs[2]);
2769 const uint512_t d3_inner = (a_limbs[0] * b_limbs[3]);
2770
2771 const uint512_t r0_inner = (a_limbs[0] * b_limbs[0]); // c0 := a0 * b0
2772 const uint512_t r1_inner = b0_inner + b1_inner; // c1 := a1 * b0 + a0 * b1
2773 const uint512_t r2_inner = c0_inner + c1_inner + c2_inner; // c2 := a2 * b0 + a1 * b1 + a0 * b2
2774 const uint512_t r3_inner = d0_inner + d1_inner + d2_inner + d3_inner; // c3 := a3 * b0 + a2 * b1 + a1 * b2 + a0 * b3
2775 const uint512_t lo_val = r0_inner + (r1_inner << NUM_LIMB_BITS); // lo := c0 + c1 * 2^b
2776 const uint512_t hi_val = r2_inner + (r3_inner << NUM_LIMB_BITS); // hi := c2 + c3 * 2^b
2777 return std::pair<uint512_t, uint512_t>(lo_val, hi_val);
2778}
2779
2780} // namespace bb::stdlib
#define BB_ASSERT_GT(left, right,...)
Definition assert.hpp:118
#define BB_ASSERT_EQ(actual, expected,...)
Definition assert.hpp:88
#define BB_ASSERT_LTE(left, right,...)
Definition assert.hpp:163
#define BB_ASSERT_LT(left, right,...)
Definition assert.hpp:148
#define ASSERT(expression,...)
Definition assert.hpp:77
constexpr uint256_t slice(uint64_t start, uint64_t end) const
constexpr uint64_t get_msb() const
constexpr uintx slice(const uint64_t start, const uint64_t end) const
Definition uintx.hpp:82
constexpr uint64_t get_msb() const
Definition uintx.hpp:69
static void unsafe_evaluate_multiple_multiply_add(const std::vector< bigfield > &input_left, const std::vector< bigfield > &input_right, const std::vector< bigfield > &to_add, const bigfield &input_quotient, const std::vector< bigfield > &input_remainders)
Evaluate a relation involving multiple multiplications and additions.
static bigfield conditional_assign(const bool_t< Builder > &predicate, const bigfield &lhs, const bigfield &rhs)
Definition bigfield.hpp:592
static bigfield msub_div(const std::vector< bigfield > &mul_left, const std::vector< bigfield > &mul_right, const bigfield &divisor, const std::vector< bigfield > &to_sub, bool enable_divisor_nz_check=true)
Builder * get_context() const
Definition bigfield.hpp:701
bigfield operator*(const bigfield &other) const
Evaluate a non-native field multiplication: (a * b = c mod p) where p == target_basis....
bigfield conditional_select(const bigfield &other, const bool_t< Builder > &predicate) const
Create an element which is equal to either this or other based on the predicate.
static bigfield div_check_denominator_nonzero(const std::vector< bigfield > &numerators, const bigfield &denominator)
static bigfield sum(const std::vector< bigfield > &terms)
Create constraints for summing these terms.
bigfield(const field_t< Builder > &low_bits, const field_t< Builder > &high_bits, const bool can_overflow=false, const size_t maximum_bitlength=0)
Constructs a new bigfield object from two field elements representing the low and high bits.
static void unsafe_evaluate_square_add(const bigfield &left, const std::vector< bigfield > &to_add, const bigfield &quotient, const bigfield &remainder)
Evaluate a square with several additions.
bigfield madd(const bigfield &to_mul, const std::vector< bigfield > &to_add) const
Compute a * b + ...to_add = c mod p.
bigfield conditional_negate(const bool_t< Builder > &predicate) const
static bigfield mult_madd(const std::vector< bigfield > &mul_left, const std::vector< bigfield > &mul_right, const std::vector< bigfield > &to_add, bool fix_remainder_to_zero=false)
void set_origin_tag(const bb::OriginTag &tag) const
Definition bigfield.hpp:703
uint512_t get_value() const
void assert_is_in_field(std::string const &msg="bigfield::assert_is_in_field") const
static bigfield internal_div(const std::vector< bigfield > &numerators, const bigfield &denominator, bool check_for_zero)
void assert_less_than(const uint256_t &upper_limit, std::string const &msg="bigfield::assert_less_than") const
bigfield add_to_lower_limb(const field_t< Builder > &other, const uint256_t &other_maximum_value) const
Add a field element to the lower limb. CAUTION (the element has to be constrained before using this f...
void set_free_witness_tag()
Set the free witness flag for the bigfield.
Definition bigfield.hpp:723
bigfield & operator=(const bigfield &other)
void convert_constant_to_fixed_witness(Builder *builder)
Definition bigfield.hpp:677
uint512_t get_maximum_value() const
std::array< uint256_t, NUM_LIMBS > get_binary_basis_limb_maximums()
Get the maximum values of the binary basis limbs.
static uint512_t compute_maximum_quotient_value(const std::vector< uint512_t > &as, const std::vector< uint512_t > &bs, const std::vector< uint512_t > &to_add)
Compute the maximum possible value of quotient of a*b+\sum(to_add)
bigfield sqradd(const std::vector< bigfield > &to_add) const
Square and add operator, computes a * a + ...to_add = c mod p.
bigfield add_two(const bigfield &add_a, const bigfield &add_b) const
Create constraints for summing three bigfield elements efficiently.
std::array< uint32_t, NUM_LIMBS > get_binary_basis_limb_witness_indices() const
Get the witness indices of the (normalized) binary basis limbs.
Definition bigfield.hpp:963
bb::OriginTag get_origin_tag() const
Definition bigfield.hpp:711
static bigfield from_witness(Builder *ctx, const bb::field< T > &input)
Definition bigfield.hpp:296
void reduction_check() const
Check if the bigfield element needs to be reduced.
static constexpr uint256_t modulus
Definition bigfield.hpp:310
static bigfield dual_madd(const bigfield &left_a, const bigfield &right_a, const bigfield &left_b, const bigfield &right_b, const std::vector< bigfield > &to_add)
bigfield sqr() const
Square operator, computes a * a = c mod p.
static void perform_reductions_for_mult_madd(std::vector< bigfield > &mul_left, std::vector< bigfield > &mul_right, const std::vector< bigfield > &to_add)
Performs individual reductions on the supplied elements as well as more complex reductions to prevent...
bool is_constant() const
Check if the bigfield is constant, i.e. its prime limb is constant.
Definition bigfield.hpp:615
void reduce_mod_target_modulus() const
static std::pair< uint512_t, uint512_t > compute_quotient_remainder_values(const bigfield &a, const bigfield &b, const std::vector< bigfield > &to_add)
Compute the quotient and remainder values for dividing (a * b + (to_add[0] + ... + to_add[-1])) with ...
void unsafe_assert_less_than(const uint256_t &upper_limit, std::string const &msg="bigfield::unsafe_assert_less_than") const
Assert that the current bigfield is less than the given upper limit.
bigfield operator+(const bigfield &other) const
Adds two bigfield elements. Inputs are reduced to the modulus if necessary. Requires 4 gates if both ...
void assert_equal(const bigfield &other, std::string const &msg="bigfield::assert_equal") const
static bigfield create_from_u512_as_witness(Builder *ctx, const uint512_t &value, const bool can_overflow=false, const size_t maximum_bitlength=0)
Creates a bigfield element from a uint512_t. Bigfield element is constructed as a witness and not a c...
bigfield pow(const uint32_t exponent) const
Raise the bigfield element to the power of (out-of-circuit) exponent.
static std::pair< bool, size_t > get_quotient_reduction_info(const std::vector< uint512_t > &as_max, const std::vector< uint512_t > &bs_max, const std::vector< bigfield > &to_add, const std::vector< uint1024_t > &remainders_max={ DEFAULT_MAXIMUM_REMAINDER })
Check for 2 conditions (CRT modulus is overflown or the maximum quotient doesn't fit into range proof...
static bigfield unsafe_construct_from_limbs(const field_t< Builder > &a, const field_t< Builder > &b, const field_t< Builder > &c, const field_t< Builder > &d, const bool can_overflow=false)
Construct a bigfield element from binary limbs that are already reduced.
Definition bigfield.hpp:157
void sanity_check() const
Perform a sanity check on a value that is about to interact with another value.
static void unsafe_evaluate_multiply_add(const bigfield &input_left, const bigfield &input_to_mul, const std::vector< bigfield > &to_add, const bigfield &input_quotient, const std::vector< bigfield > &input_remainders)
Evaluate a multiply add identity with several added elements and several remainders.
field_t< Builder > prime_basis_limb
Represents a bigfield element in the prime basis: (a mod n) where n is the native modulus.
Definition bigfield.hpp:85
static bigfield div_without_denominator_check(const std::vector< bigfield > &numerators, const bigfield &denominator)
std::array< Limb, NUM_LIMBS > binary_basis_limbs
Represents a bigfield element in the binary basis. A bigfield element is represented as a combination...
Definition bigfield.hpp:80
bool_t< Builder > operator==(const bigfield &other) const
Validate whether two bigfield elements are equal to each other.
bigfield operator-() const
Negation operator, works by subtracting this from zero.
Definition bigfield.hpp:481
static std::pair< uint512_t, uint512_t > compute_partial_schoolbook_multiplication(const std::array< uint256_t, NUM_LIMBS > &a_limbs, const std::array< uint256_t, NUM_LIMBS > &b_limbs)
Compute the partial multiplication of two uint256_t arrays using schoolbook multiplication.
void assert_is_not_equal(const bigfield &other, std::string const &msg="bigfield: prime limb diff is zero, but expected non-zero") const
bigfield operator/(const bigfield &other) const
Implements boolean logic in-circuit.
Definition bool.hpp:59
bool get_value() const
Definition bool.hpp:111
bool is_constant() const
Definition bool.hpp:113
void set_origin_tag(const OriginTag &new_tag) const
Definition bool.hpp:128
void unset_free_witness_tag()
Definition bool.hpp:131
Builder * context
Definition bool.hpp:141
OriginTag tag
Definition bool.hpp:145
OriginTag get_origin_tag() const
Definition bool.hpp:129
Represents a dynamic array of bytes in-circuit.
byte_array slice(size_t offset) const
Slice bytes from the byte array starting at offset. Does not add any constraints.
size_t size() const
Builder * get_context() const
bb::OriginTag get_origin_tag() const
void assert_is_zero(std::string const &msg="field_t::assert_is_zero") const
Enforce a copy constraint between *this and 0 stored at zero_idx of the Builder.
Definition field.cpp:678
void assert_equal(const field_t &rhs, std::string const &msg="field_t::assert_equal") const
Copy constraint: constrain that *this field is equal to rhs element.
Definition field.cpp:931
field_t madd(const field_t &to_mul, const field_t &to_add) const
Definition field.cpp:509
static field_t from_witness_index(Builder *ctx, uint32_t witness_index)
Definition field.cpp:61
bb::fr additive_constant
Definition field.hpp:88
static void evaluate_polynomial_identity(const field_t &a, const field_t &b, const field_t &c, const field_t &d, const std::string &msg="field_t::evaluate_polynomial_identity")
Given a, b, c, d, constrain a * b + c + d = 0 by creating a big_mul_gate.
Definition field.cpp:1114
static field_t accumulate(const std::vector< field_t > &input)
Efficiently compute the sum of vector entries. Using big_add_gate we reduce the number of gates neede...
Definition field.cpp:1157
void create_range_constraint(size_t num_bits, std::string const &msg="field_t::range_constraint") const
Let x = *this.normalize(), constrain x.v < 2^{num_bits}.
Definition field.cpp:910
static field_t conditional_assign(const bool_t< Builder > &predicate, const field_t &lhs, const field_t &rhs)
If predicate == true then return lhs, else return rhs.
Definition field.cpp:886
Builder * context
Definition field.hpp:51
bb::fr multiplicative_constant
Definition field.hpp:89
bb::fr get_value() const
Given a := *this, compute its value given by a.v * a.mul + a.add.
Definition field.cpp:829
static void evaluate_linear_identity(const field_t &a, const field_t &b, const field_t &c, const field_t &d, const std::string &msg="field_t::evaluate_linear_identity")
Constrain a + b + c + d to be equal to 0.
Definition field.cpp:1078
bool is_constant() const
Definition field.hpp:407
uint32_t get_normalized_witness_index() const
Get the index of a normalized version of this element.
Definition field.hpp:479
void set_origin_tag(const OriginTag &new_tag) const
Definition field.hpp:332
uint32_t witness_index
Definition field.hpp:132
field_t add_two(const field_t &add_b, const field_t &add_c) const
Efficiently compute (this + a + b) using big_mul gate.
Definition field.cpp:574
void assert_is_not_zero(std::string const &msg="field_t::assert_is_not_zero") const
Constrain *this to be non-zero by establishing that it has an inverse.
Definition field.cpp:709
uint32_t get_witness_index() const
Get the witness index of the current field element.
Definition field.hpp:469
StrictMock< MockContext > context
FF a
FF b
stdlib::field_t< Builder > field_ct
void add_values(TreeType &tree, const std::vector< NullifierLeafValue > &values)
uintx< uint256_t > uint512_t
Definition uintx.hpp:307
uintx< uint512_t > uint1024_t
Definition uintx.hpp:309
std::conditional_t< IsGoblinBigGroup< C, Fq, Fr, G >, element_goblin::goblin_element< C, goblin_field< C >, Fr, G >, element_default::element< C, Fq, Fr, G > > element
element wraps either element_default::element or element_goblin::goblin_element depending on parametr...
Entry point for Barretenberg command-line interface.
Univariate< Fr, domain_end, domain_start, skip_count > operator+(const Fr &ff, const Univariate< Fr, domain_end, domain_start, skip_count > &uv)
field< Bn254FrParams > fr
Definition fr.hpp:174
C slice(C const &container, size_t start)
Definition container.hpp:9
Inner sum(Cont< Inner, Args... > const &in)
Definition container.hpp:70
constexpr decltype(auto) get(::tuplet::tuple< T... > &&t) noexcept
Definition tuple.hpp:13
This file contains part of the logic for the Origin Tag mechanism that tracks the use of in-circuit p...
constexpr field invert() const noexcept
Represents a single limb of a bigfield element, with its value and maximum value.
Definition bigfield.hpp:44
void throw_or_abort(std::string const &err)