Barretenberg
The ZK-SNARK library at the core of Aztec
Loading...
Searching...
No Matches
bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup > Class Template Reference

#include <biggroup.hpp>

Classes

struct  batch_lookup_table_plookup
 
struct  chain_add_accumulator
 
struct  eight_bit_fixed_base_table
 Eight-bit fixed base table for scalar multiplication. More...
 
struct  four_bit_table_plookup
 Four-bit variable-base table for scalar multiplication. More...
 
struct  lookup_table_plookup
 Generic lookup table that uses ROM tables internally to access group elements. More...
 
struct  secp256k1_wnaf
 
struct  secp256k1_wnaf_pair
 

Public Types

using Builder = Builder_
 
using bool_ct = stdlib::bool_t< Builder >
 
using biggroup_tag = element
 
using BaseField = Fq
 

Public Member Functions

 element ()
 
 element (const typename NativeGroup::affine_element &input)
 
 element (const Fq &x, const Fq &y)
 
 element (const Fq &x, const Fq &y, const bool_ct &is_infinity)
 
 element (const element &other)
 
 element (element &&other) noexcept
 
 ~element ()=default
 
uint32_t set_public () const
 Set the witness indices for the x and y coordinates to public.
 
void validate_on_curve (std::string const &msg="biggroup::validate_on_curve") const
 Check that the point is on the curve.
 
void convert_constant_to_fixed_witness (Builder *builder)
 Creates fixed witnesses from a constant element.
 
void fix_witness ()
 Fix a witness. The value of the witness is constrained with a selector.
 
elementoperator= (const element &other)
 
elementoperator= (element &&other) noexcept
 
byte_array< Builderto_byte_array () const
 Serialize the element to a byte array in form: (yhi || ylo || xhi || xlo).
 
element checked_unconditional_add (const element &other) const
 
element checked_unconditional_subtract (const element &other) const
 
element operator+ (const element &other) const
 
element operator- (const element &other) const
 
element operator- () const
 
element operator+= (const element &other)
 
element operator-= (const element &other)
 
std::array< element, 2 > checked_unconditional_add_sub (const element &other) const
 Compute (*this) + other AND (*this) - other as a size-2 array.
 
element operator* (const Fr &scalar) const
 
element conditional_negate (const bool_ct &predicate) const
 
element conditional_select (const element &other, const bool_ct &predicate) const
 Selects this if predicate is false, other if predicate is true.
 
void incomplete_assert_equal (const element &other, const std::string msg="biggroup::incomplete_assert_equal") const
 Asserts that two group elements are equal (i.e., x, y coordinates and infinity flag are all equal).
 
element normalize () const
 
element scalar_mul (const Fr &scalar, const size_t max_num_bits=0) const
 Implements scalar multiplication that supports short scalars. For multiple scalar multiplication use one of the batch_mul methods to save gates.
 
element reduce () const
 
element dbl () const
 
element montgomery_ladder (const element &other) const
 
element montgomery_ladder (const chain_add_accumulator &to_add)
 
element multiple_montgomery_ladder (const std::vector< chain_add_accumulator > &to_add) const
 Perform repeated iterations of the montgomery ladder algorithm.
 
element quadruple_and_add (const std::vector< element > &to_add) const
 Compute 4.P + to_add[0] + ... + to_add[to_add.size() - 1].
 
NativeGroup::affine_element get_value () const
 
Builderget_context () const
 
Builderget_context (const element &other) const
 
bool_ct is_point_at_infinity () const
 
void set_point_at_infinity (const bool_ct &is_infinity, const bool &add_to_used_witnesses=false)
 
element get_standard_form () const
 Enforce x and y coordinates of a point to be (0,0) in the case of point at infinity.
 
void set_origin_tag (OriginTag tag) const
 
OriginTag get_origin_tag () const
 
void unset_free_witness_tag ()
 Unset the free witness flag for the element's tags.
 
void set_free_witness_tag ()
 Set the free witness flag for the element's tags.
 
template<size_t max_num_bits>
element< C, Fq, Fr, Gwnaf_batch_mul (const std::vector< element > &_points, const std::vector< Fr > &_scalars)
 Multiscalar multiplication that utilizes 4-bit wNAF lookup tables.
 
template<typename , typename >
requires (IsNotMegaBuilder<C>)
element< C, Fq, Fr, Gbn254_endo_batch_mul_with_generator (const std::vector< element > &big_points, const std::vector< Fr > &big_scalars, const std::vector< element > &small_points, const std::vector< Fr > &small_scalars, const Fr &generator_scalar, const size_t max_num_small_bits)
 
template<typename , typename >
requires (IsNotMegaBuilder<C>)
element< C, Fq, Fr, Gbn254_endo_batch_mul (const std::vector< element > &big_points, const std::vector< Fr > &big_scalars, const std::vector< element > &small_points, const std::vector< Fr > &small_scalars, const size_t max_num_small_bits)
 
template<size_t wnaf_size>
std::vector< field_t< C > > convert_wnaf_values_to_witnesses (C *builder, const uint64_t *wnaf_values, bool is_negative, size_t rounds, const bool range_constrain_wnaf)
 
template<size_t num_bits, size_t wnaf_size, size_t lo_stagger, size_t hi_stagger>
std::pair< Fr, typename element< C, Fq, Fr, G >::secp256k1_wnaf > compute_secp256k1_single_wnaf (C *builder, const secp256k1::fr &scalar, size_t stagger, bool is_negative, const bool range_constrain_wnaf, bool is_lo)
 
template<size_t max_num_bits, size_t WNAF_SIZE>
std::vector< field_t< C > > compute_wnaf (const Fr &scalar)
 
template<typename , typename >
element< C, Fq, Fr, Gsecp256k1_ecdsa_mul (const element &pubkey, const Fr &u1, const Fr &u2)
 
template<size_t num_elements>
std::array< twin_rom_table< C >, Fq::NUM_LIMBS+1 > create_group_element_rom_tables (const std::array< element, num_elements > &rom_data, std::array< uint256_t, Fq::NUM_LIMBS *2 > &limb_max)
 Constructs a ROM table to look up linear combinations of group elements.
 
template<size_t >
element< C, Fq, Fr, Gread_group_element_rom_tables (const std::array< twin_rom_table< C >, Fq::NUM_LIMBS+1 > &tables, const field_t< C > &index, const std::array< uint256_t, Fq::NUM_LIMBS *2 > &limb_max)
 

Static Public Member Functions

static std::array< fr, PUBLIC_INPUTS_SIZEconstruct_dummy ()
 Construct a dummy element (the group generator) and return its limbs as fr constants.
 
static element reconstruct_from_public (const std::span< const Fr, PUBLIC_INPUTS_SIZE > &limbs)
 Reconstruct a biggroup element from limbs of its coordinates (generally stored in the public inputs)
 
static element from_witness (Builder *ctx, const typename NativeGroup::affine_element &input)
 Create a biggroup witness from a native group element, allocating new witnesses as necessary.
 
static element one (Builder *ctx)
 Creates a constant group generator.
 
static element point_at_infinity (Builder *ctx)
 
static chain_add_accumulator chain_add_start (const element &p1, const element &p2)
 
static chain_add_accumulator chain_add (const element &p1, const chain_add_accumulator &accumulator)
 
static element chain_add_end (const chain_add_accumulator &accumulator)
 
static std::pair< std::vector< element >, std::vector< Fr > > mask_points (const std::vector< element > &_points, const std::vector< Fr > &_scalars)
 Given two lists of points that need to be multiplied by scalars, create a new list of length +1 with original points masked, but the same scalar product sum.
 
static std::pair< std::vector< element >, std::vector< Fr > > handle_points_at_infinity (const std::vector< element > &_points, const std::vector< Fr > &_scalars)
 Replace all pairs (∞, scalar) by the pair (one, 0) where one is a fixed generator of the curve.
 
template<size_t max_num_bits = 0>
static element wnaf_batch_mul (const std::vector< element > &points, const std::vector< Fr > &scalars)
 
static element batch_mul (const std::vector< element > &points, const std::vector< Fr > &scalars, const size_t max_num_bits=0, const bool with_edgecases=false)
 Generic batch multiplication that works for all elliptic curve types.
 
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, bb::g1>::value>>
requires (IsNotMegaBuilder<Builder>)
static element bn254_endo_batch_mul (const std::vector< element > &big_points, const std::vector< Fr > &big_scalars, const std::vector< element > &small_points, const std::vector< Fr > &small_scalars, const size_t max_num_small_bits)
 
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, bb::g1>::value>>
requires (IsNotMegaBuilder<Builder>)
static element bn254_endo_batch_mul_with_generator (const std::vector< element > &big_points, const std::vector< Fr > &big_scalars, const std::vector< element > &small_points, const std::vector< Fr > &small_scalars, const Fr &generator_scalar, const size_t max_num_small_bits)
 
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, secp256k1::g1>::value>>
static element secp256k1_ecdsa_mul (const element &pubkey, const Fr &u1, const Fr &u2)
 
static std::vector< bool_ctcompute_naf (const Fr &scalar, const size_t max_num_bits=0)
 
template<size_t max_num_bits = 0, size_t WNAF_SIZE = 4>
static std::vector< field_t< Builder > > compute_wnaf (const Fr &scalar)
 
template<size_t wnaf_size, size_t staggered_lo_offset = 0, size_t staggered_hi_offset = 0>
static secp256k1_wnaf_pair compute_secp256k1_endo_wnaf (const Fr &scalar, const bool range_constrain_wnaf=true)
 

Public Attributes

Fq x
 
Fq y
 

Static Public Attributes

static constexpr size_t PUBLIC_INPUTS_SIZE = BIGGROUP_PUBLIC_INPUTS_SIZE
 

Private Types

using twin_lookup_table = lookup_table_plookup< 2 >
 
using triple_lookup_table = lookup_table_plookup< 3 >
 
using quad_lookup_table = lookup_table_plookup< 4 >
 
using batch_lookup_table = batch_lookup_table_plookup
 

Static Private Member Functions

template<size_t num_bits, size_t wnaf_size, size_t lo_stagger, size_t hi_stagger>
static std::pair< Fr, secp256k1_wnafcompute_secp256k1_single_wnaf (Builder *builder, const secp256k1::fr &scalar, size_t stagger, bool is_negative, const bool range_constrain_wnaf=true, bool is_lo=false)
 Compute the wNAF representation (in circuit) of a scalar for secp256k1.
 
template<size_t wnaf_size>
static std::pair< uint64_t, bool > get_staggered_wnaf_fragment_value (const uint64_t fragment_u64, const uint64_t stagger, bool is_negative, bool wnaf_skew)
 Compute the stagger-related part of wNAF and the final skew.
 
template<size_t wnaf_size>
static std::vector< field_t< Builder > > convert_wnaf_values_to_witnesses (Builder *builder, const uint64_t *wnaf_values, bool is_negative, size_t rounds, const bool range_constrain_wnaf=true)
 Convert wNAF values to witness values.
 
template<size_t wnaf_size>
static Fr reconstruct_bigfield_from_wnaf (Builder *builder, const std::vector< field_t< Builder > > &wnaf, const bool_ct &positive_skew, const bool_ct &negative_skew, const field_t< Builder > &stagger_fragment, const size_t stagger, const size_t rounds)
 Reconstruct a scalar from its wNAF representation in circuit.
 
template<size_t num_elements>
static std::array< twin_rom_table< Builder >, Fq::NUM_LIMBS+1 > create_group_element_rom_tables (const std::array< element, num_elements > &rom_data, std::array< uint256_t, Fq::NUM_LIMBS *2 > &limb_max)
 
template<size_t num_elements>
static element read_group_element_rom_tables (const std::array< twin_rom_table< Builder >, Fq::NUM_LIMBS+1 > &tables, const field_t< Builder > &index, const std::array< uint256_t, Fq::NUM_LIMBS *2 > &limb_max)
 
static std::pair< element, elementcompute_offset_generators (const size_t num_rounds)
 
static NativeGroup::affine_element compute_table_offset_generator ()
 Compute an offset generator for use in biggroup tables.
 
static std::pair< four_bit_table_plookup, four_bit_table_plookupcreate_endo_pair_four_bit_table_plookup (const element &input)
 Create a endo pair four bit table for the given group element.
 
static std::pair< quad_lookup_table, quad_lookup_tablecreate_endo_pair_quad_lookup_table (const std::array< element, 4 > &inputs)
 

Private Attributes

bool_ct _is_infinity
 

Friends

class element_test_accessor
 

Detailed Description

template<class Builder_, class Fq, class Fr, class NativeGroup>
class bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >

Definition at line 25 of file biggroup.hpp.

Member Typedef Documentation

◆ BaseField

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::BaseField = Fq

Definition at line 30 of file biggroup.hpp.

◆ batch_lookup_table

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::batch_lookup_table = batch_lookup_table_plookup
private

Definition at line 989 of file biggroup.hpp.

◆ biggroup_tag

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::biggroup_tag = element

Definition at line 29 of file biggroup.hpp.

◆ bool_ct

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::bool_ct = stdlib::bool_t<Builder>

Definition at line 28 of file biggroup.hpp.

◆ Builder

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::Builder = Builder_

Definition at line 27 of file biggroup.hpp.

◆ quad_lookup_table

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::quad_lookup_table = lookup_table_plookup<4>
private

Definition at line 679 of file biggroup.hpp.

◆ triple_lookup_table

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::triple_lookup_table = lookup_table_plookup<3>
private

Definition at line 677 of file biggroup.hpp.

◆ twin_lookup_table

template<class Builder_ , class Fq , class Fr , class NativeGroup >
using bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::twin_lookup_table = lookup_table_plookup<2>
private

Definition at line 675 of file biggroup.hpp.

Constructor & Destructor Documentation

◆ element() [1/6]

template<typename C , class Fq , class Fr , class G >
bb::stdlib::element_default::element< C, Fq, Fr, G >::element ( )

Definition at line 19 of file biggroup_impl.hpp.

◆ element() [2/6]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::element ( const typename NativeGroup::affine_element< Builder_, Fq, Fr, NativeGroup > &  input)

◆ element() [3/6]

template<typename C , class Fq , class Fr , class G >
bb::stdlib::element_default::element< C, Fq, Fr, G >::element ( const Fq x,
const Fq y 
)

Definition at line 33 of file biggroup_impl.hpp.

◆ element() [4/6]

template<typename C , class Fq , class Fr , class G >
bb::stdlib::element_default::element< C, Fq, Fr, G >::element ( const Fq x,
const Fq y,
const bool_ct is_infinity 
)

Definition at line 40 of file biggroup_impl.hpp.

◆ element() [5/6]

template<typename C , class Fq , class Fr , class G >
bb::stdlib::element_default::element< C, Fq, Fr, G >::element ( const element< Builder_, Fq, Fr, NativeGroup > &  other)

Definition at line 47 of file biggroup_impl.hpp.

◆ element() [6/6]

template<typename C , class Fq , class Fr , class G >
bb::stdlib::element_default::element< C, Fq, Fr, G >::element ( element< Builder_, Fq, Fr, NativeGroup > &&  other)
noexcept

Definition at line 54 of file biggroup_impl.hpp.

◆ ~element()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::~element ( )
default

Member Function Documentation

◆ batch_mul()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::batch_mul ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  _points,
const std::vector< Fr > &  _scalars,
const size_t  max_num_bits = 0,
const bool  with_edgecases = false 
)
static

Generic batch multiplication that works for all elliptic curve types.

Implementation is identical to bn254_endo_batch_mul but WITHOUT the endomorphism transforms OR support for short scalars See bn254_endo_batch_mul for description of algorithm.

Template Parameters
CThe circuit builder type.
FqThe field of definition of the points in _points.
FrThe field of scalars acting on _points.
GThe group whose arithmetic is emulated by element.
Parameters
_points
_scalars
max_num_bitsThe max of the bit lengths of the scalars.
with_edgecasesUse when points are linearly dependent. Randomises them.
Returns
element<C, Fq, Fr, G>

Definition at line 806 of file biggroup_impl.hpp.

◆ bn254_endo_batch_mul() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, bb::g1>::value>>
requires (IsNotMegaBuilder<Builder>)
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::bn254_endo_batch_mul ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  big_points,
const std::vector< Fr > &  big_scalars,
const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  small_points,
const std::vector< Fr > &  small_scalars,
const size_t  max_num_small_bits 
)
static

◆ bn254_endo_batch_mul() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename , typename >
requires (IsNotMegaBuilder<C>)
element< C, Fq, Fr, G > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::bn254_endo_batch_mul ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  big_points,
const std::vector< Fr > &  big_scalars,
const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  small_points,
const std::vector< Fr > &  small_scalars,
const size_t  max_num_small_bits 
)

A batch multiplication method for the BN254 curve. This method is only available if Fr == field_t<bb::fr>

big_points : group elements we will multiply by full 254-bit scalar multipliers big_scalars : 254-bit scalar multipliers. We want to compute (\sum big_scalars[i] * big_points[i]) small_points : group elements we will multiply by short scalar mutipliers whose max value will be (1 << max_num_small_bits) small_scalars : short scalar mutipliers whose max value will be (1 << max_num_small_bits) max_num_small_bits : MINIMUM value must be 128 bits (we will be splitting big_scalars into two 128-bit scalars, we assume all scalars after this transformation are 128 bits)

Split big scalars into short 128-bit scalars.

For big_scalars we use the BN254 curve endomorphism to split the scalar into two short 128-bit scalars. i.e. for scalar multiplier k we derive 128-bit values k1, k2 where: k = k1 - k2 * \lambda (\lambda is the cube root of unity modulo the group order of the BN254 curve)

This ensures ALL our scalar multipliers can now be treated as 128-bit scalars, which halves the number of iterations of our main "double and add" loop!

Compute batch_lookup_table

batch_lookup_table implements a lookup table for a vector of points.

We subdivide batch_lookup_table into a set of 3-bit lookup tables, (using 2-bit and 1-bit tables if points.size() is not a multiple of 8)

We index the lookup table using a vector of NAF values for each point

e.g. for points P_1, .., P_N and naf values s_1, ..., s_n (where S_i = +1 or -1), the lookup table will compute:

\sum_{i=0}^n (s_i ? -P_i : P_i)

Compute scalar multiplier NAFs

A Non Adjacent Form is a representation of an integer where each 'bit' is either +1 OR -1, i.e. each bit entry is non-zero. This is VERY useful for biggroup operations, as this removes the need to conditionally add points depending on whether the scalar mul bit is +1 or 0 (instead we multiply the y-coordinate by the NAF value, which is cheaper)

The vector naf_entries tracks the naf set for each point, where each naf set is a vector of bools if naf[i][j] = 0 this represents a NAF value of -1 if naf[i][j] = 1 this represents a NAF value of +1

Initialize accumulator point with an offset generator. See compute_offset_generators for detailed explanation

Get the initial entry of our point table. This is the same as point_table.get_accumulator for the most significant NAF entry. HOWEVER, we know the most significant NAF value is +1 because our scalar muls are positive. get_initial_entry handles this special case as it's cheaper than point_table.get_accumulator

Main "double and add" loop

Each loop iteration traverses TWO bits of our scalar multiplier. Algorithm performs following:

  1. Extract NAF value for bit 2*i - 1 for each scalar multiplier and store in nafs vector.
  2. Use nafs vector to derive the point that we need (add_1) to add into our accumulator.
  3. Repeat the above 2 steps but for bit 2 * i (add_2)
  4. Compute accumulator = 4 * accumulator + 2 * add_1 + add_2 using multiple_montgomery_ladder method

The purpose of the above is to minimize the number of required range checks (vs a simple double and add algo).

When computing repeated iterations of the montgomery ladder algorithm, we can neglect computing the y-coordinate of each ladder output. See multiple_montgomery_ladder for more details.

Get chain_add_accumulator.

Recovering a point from our point table requires group additions iff the table is >3 bits. We can chain repeated add operations together without computing the y-coordinate of intermediate addition outputs.

This is represented using the chain_add_accumulator type. See the type declaration for more details

(this is cheaper than regular additions iff point_table.get_accumulator require 2 or more point additions. Cost is the same as point_table.get_accumulator if 1 or 0 point additions are required)

Handle skew factors.

We represent scalar multipliers via Non Adjacent Form values (NAF). In a NAF, each bit value is either -1 or +1. We use this representation to avoid having to conditionally add points (i.e. every bit we iterate over will result in either a point addition or subtraction, instead of conditionally adding a point into an accumulator, we conditionally negate the point's y-coordinate and always add it into the accumulator)

However! The problem here is that we can only represent odd integers with a NAF. For even integers we add +1 to the integer and set that multiplier's skew value to true.

We record a scalar multiplier's skew value at the end of their NAF values (naf_entries[point_index][num_rounds])

If the skew is true, we must subtract the original point from the accumulator.

Definition at line 218 of file biggroup_bn254.hpp.

◆ bn254_endo_batch_mul_with_generator() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, bb::g1>::value>>
requires (IsNotMegaBuilder<Builder>)
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::bn254_endo_batch_mul_with_generator ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  big_points,
const std::vector< Fr > &  big_scalars,
const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  small_points,
const std::vector< Fr > &  small_scalars,
const Fr generator_scalar,
const size_t  max_num_small_bits 
)
static

◆ bn254_endo_batch_mul_with_generator() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename , typename >
requires (IsNotMegaBuilder<C>)
element< C, Fq, Fr, G > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::bn254_endo_batch_mul_with_generator ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  big_points,
const std::vector< Fr > &  big_scalars,
const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  small_points,
const std::vector< Fr > &  small_scalars,
const Fr generator_scalar,
const size_t  max_num_small_bits 
)

Perform a multi-scalar multiplication over the BN254 curve

The inputs are:

big_scalars/big_points : 254-bit scalar multipliers (hardcoded to be 4 at the moment) small_scalars/small_points : 128-bit scalar multipliers generator_scalar : a 254-bit scalar multiplier over the bn254 generator point

Definition at line 36 of file biggroup_bn254.hpp.

◆ chain_add()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G >::chain_add_accumulator bb::stdlib::element_default::element< C, Fq, Fr, G >::chain_add ( const element< Builder_, Fq, Fr, NativeGroup > &  p1,
const chain_add_accumulator accumulator 
)
static

We compute the following terms:

lambda = acc.lambda_prev * (acc.x1_prev - acc.x) - acc.y1_prev - p1.y / acc.x - p1.x x3 = lambda * lambda - acc.x - p1.x

Requires only 2 non-native field reductions

Definition at line 327 of file biggroup_impl.hpp.

◆ chain_add_end()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::chain_add_end ( const chain_add_accumulator acc)
static

End an addition chain. Produces a full output group element with a y-coordinate

Definition at line 376 of file biggroup_impl.hpp.

◆ chain_add_start()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G >::chain_add_accumulator bb::stdlib::element_default::element< C, Fq, Fr, G >::chain_add_start ( const element< Builder_, Fq, Fr, NativeGroup > &  p1,
const element< Builder_, Fq, Fr, NativeGroup > &  p2 
)
static

We can chain repeated point additions together, where we only require 2 non-native field multiplications per point addition, instead of 3

Evaluate a chain addition!

When adding a set of points P_1 + ... + P_N, we do not need to compute the y-coordinate of intermediate addition terms.

i.e. we substitute acc.y with acc.y = acc.lambda_prev * (acc.x1_prev - acc.x) - acc.y1_prev

lambda_prev, x1_prev, y1_prev are the lambda, x1, y1 terms from the previous addition operation.

chain_add requires 1 less non-native field reduction than a regular add operation. begin a chain of additions input points p1 p2 output accumulator = x3_prev (output x coordinate), x1_prev, y1_prev (p1), lambda_prev (y2 - y1) / (x2 - x1)

Definition at line 310 of file biggroup_impl.hpp.

◆ checked_unconditional_add()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::checked_unconditional_add ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Definition at line 213 of file biggroup_impl.hpp.

◆ checked_unconditional_add_sub()

template<typename C , class Fq , class Fr , class G >
std::array< element< C, Fq, Fr, G >, 2 > bb::stdlib::element_default::element< C, Fq, Fr, G >::checked_unconditional_add_sub ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Compute (*this) + other AND (*this) - other as a size-2 array.

We require this operation when computing biggroup lookup tables for multi-scalar-multiplication. This combined method reduces the number of field additions, field subtractions required (as well as 1 less assert_is_not_equal check)

Template Parameters
C
Fq
Fr
G
Parameters
other
Returns
std::array<element<C, Fq, Fr, G>, 2>

Definition at line 250 of file biggroup_impl.hpp.

◆ checked_unconditional_subtract()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::checked_unconditional_subtract ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Definition at line 223 of file biggroup_impl.hpp.

◆ compute_naf()

template<typename C , class Fq , class Fr , class G >
std::vector< bool_t< C > > bb::stdlib::element_default::element< C, Fq, Fr, G >::compute_naf ( const Fr scalar,
const size_t  max_num_bits = 0 
)
static

Definition at line 520 of file biggroup_nafs.hpp.

◆ compute_offset_generators()

template<typename C , class Fq , class Fr , class G >
std::pair< element< C, Fq, Fr, G >, element< C, Fq, Fr, G > > bb::stdlib::element_default::element< C, Fq, Fr, G >::compute_offset_generators ( const size_t  num_rounds)
staticprivate

compute_offset_generators! Let's explain what an offset generator is...

We evaluate biggroup group operations using INCOMPLETE addition formulae for short weierstrass curves:

L = y - y / x - x 2 1 2 1

2 x = L - x - x 3 2 1

y = L (x - x ) - y 3 1 3 1

These formuale do not work for the edge case where x2 == x1

Instead of handling the edge case (which is expensive!) we instead FORBID it from happening by requiring x2 != x1 (other.x.assert_is_not_equal(x) will be present in all group operation methods)

This means it is essential we ensure an honest prover will NEVER run into this edge case, or our circuit will lack completeness!

To ensure an honest prover will not fall foul of this edge case when performing a SCALAR MULTIPLICATION, we init the accumulator with an offset_generator point. This point is a generator point that is not equal to the regular generator point for this curve.

When adding points into the accumulator, the probability that an honest prover will find a collision is now ~ 1 in 2^128

We init accumulator = generator and then perform an n-bit scalar mul. The output accumulator will contain a term 2^{n-1} * generator that we need to subtract off.

offset_generators.first = generator (the initial generator point) offset_generators.second = 2^{n-1} * generator (the final generator point we need to subtract off from our accumulator)

Definition at line 777 of file biggroup_impl.hpp.

◆ compute_secp256k1_endo_wnaf()

template<typename C , class Fq , class Fr , class G >
template<size_t wnaf_size, size_t lo_stagger, size_t hi_stagger>
element< C, Fq, Fr, G >::secp256k1_wnaf_pair bb::stdlib::element_default::element< C, Fq, Fr, G >::compute_secp256k1_endo_wnaf ( const Fr scalar,
const bool  range_constrain_wnaf = true 
)
static

Split a secp256k1 Fr element into two 129 bit scalars klo, khi, where scalar = klo + \lambda * khi mod n where \lambda is the cube root of unity mod n, and n is the secp256k1 Fr modulus

We return the wnaf representation of the two 129-bit scalars

The wnaf representation includes positive_skew and negative_skew components, because for both klo, khi EITHER k < 2^{129} OR -k mod n < 2^{129}. If we have to negate the short scalar, the wnaf skew component flips sign.

Outline of algorithm:

We will use our wnaf elements to index a ROM table. ROM index values act like regular array indices, i.e. start at 0, increase by 1 per index. We need the wnaf format to follow the same structure.

The mapping from wnaf value to lookup table point is as follows (example is 4-bit WNAF):

wnaf witness value wnaf real value point representation
0 -15 -15.[P]
1 -13 -13.[P]
2 -11 -11.[P]
3 -9 -9.[P]
4 -7 -7.[P]
5 -5 -5.[P]
6 -3 -3.[P]
7 -1 -1.[P]
8 1 1.[P]
9 3 3.[P]
10 5 5.[P]
11 7 7.[P]
12 9 9.[P]
13 11 11.[P]
14 13 13.[P]
15 15 15.[P]
-----------------— --------------— -------------------—

The transformation between the wnaf witness value w and the wnaf real value v is, for an s-bit window:

                 s
     v = 2.w - (2 - 1)

To reconstruct the 129-bit scalar multiplier x from wnaf values w (starting with most significant slice):

                                                   m
                                                  ___
                                                 \     /          s      \    s.(m - i - 1)
      x =  positive_skew - negative_skew +        |    | 2.w  - (2  - 1) | . 2
                                                 /___  \    i            /
                                                  i=0

N.B. m = number of rounds = (129 + s - 1) / s

We can split the RHS into positive and negative components that are strictly positive:

                                     m
                                    ___
                                   \     /    \    s.(m - i - 1)
           x_pos = positive_skew +  |    |2.w | . 2
                                   /___  \   i/
                                    i=0

                                     m
                                    ___
                                   \     /  s     \    s.(m - i - 1)
           x_neg = negative_skew +  |    |(2  - 1)| . 2
                                   /___  \        /
                                    i=0

By independently constructing x_pos, x_neg, we ensure we never underflow the native circuit modulus

To reconstruct our wnaf components into a scalar, we perform the following (for each 129-bit slice klo, khi):

 1. Compute the wnaf entries and range constrain each entry to be < 2^s
 2. Construct `x_pos`
 3. Construct `x_neg`
 4. Cast `x_pos, x_neg` into two Fr elements and compute `Fr reconstructed = Fr(x_pos) - Fr(x_neg)`

This ensures that the only negation in performed in the Fr representation, removing the risk of underflow errors

Once klo, khi have been reconstructed as Fr elements, we validate the following:

 1. `scalar == Fr(klo) - Fr(khi) * Fr(\lambda)

Finally, we return the wnaf representations of klo, khi including the skew

The staggered offset describes the number of bits we want to remove from the input scalar before computing our wnaf slices. This is to enable us to make repeated calls to the montgomery ladder algo when computing a multi-scalar multiplication e.g. Consider an example with 2 points (A, B), using a 2-bit WNAF The typical approach would be to perfomr a double-and-add algorithm, adding points into an accumulator ACC:

ACC = ACC.dbl() ACC = ACC.dbl() ACC = ACC.add(A) ACC = ACC.add(B)

However, if the A and B WNAFs are offset by 1 bit each, we can perform the following:

ACC = ACC.dbl() ACC = ACC.add(A) ACC = ACC.dbl() ACC = ACC.add(B)

which we can reduce to:

ACC = ACC.montgomery_ladder(A) ACC = ACC.montgomery_ladder(B)

This is more efficient than the non-staggered approach as we save 1 non-native field multiplication when we replace a DBL, ADD subroutine with a call to the montgomery ladder

Definition at line 325 of file biggroup_nafs.hpp.

◆ compute_secp256k1_single_wnaf() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t num_bits, size_t wnaf_size, size_t lo_stagger, size_t hi_stagger>
static std::pair< Fr, secp256k1_wnaf > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::compute_secp256k1_single_wnaf ( Builder builder,
const secp256k1::fr scalar,
size_t  stagger,
bool  is_negative,
const bool  range_constrain_wnaf = true,
bool  is_lo = false 
)
staticprivate

Compute the wNAF representation (in circuit) of a scalar for secp256k1.

Parameters
builder
scalarThe scalar to be represented in wNAF, should be ≤ 129 bits
staggerThe stagger value (in terms of number of bits)
is_negativeWhether the scalar is negative
is_loWhether this is the low part of a split scalar
Returns
std::pair<Fr, secp256k1_wnaf>

For a scalar k > (r / 2), we compute the wNAF representation of k' = r - k. We then have k = -k' mod r, and we can perform scalar multiplication using -k'. This case is handled by setting is_negative = true.

◆ compute_secp256k1_single_wnaf() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t num_bits, size_t wnaf_size, size_t lo_stagger, size_t hi_stagger>
std::pair< Fr, typename element< C, Fq, Fr, G >::secp256k1_wnaf > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::compute_secp256k1_single_wnaf ( C builder,
const secp256k1::fr scalar,
size_t  stagger,
bool  is_negative,
const bool  range_constrain_wnaf,
bool  is_lo 
)

Definition at line 164 of file biggroup_nafs.hpp.

◆ compute_table_offset_generator()

template<typename C , class Fq , class Fr , class G >
G::affine_element bb::stdlib::element_default::element< C, Fq, Fr, G >::compute_table_offset_generator ( )
staticprivate

Compute an offset generator for use in biggroup tables.

Sometimes the points from which we construct the tables are going to be dependent in such a way that combining them for constructing the table is not possible without handling the edgecases such as the point at infinity and doubling. To avoid handling those we add multiples of this offset generator to the points.

Parameters
num_rounds

Definition at line 25 of file biggroup_edgecase_handling.hpp.

◆ compute_wnaf() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t max_num_bits = 0, size_t WNAF_SIZE = 4>
static std::vector< field_t< Builder > > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::compute_wnaf ( const Fr scalar)
static

◆ compute_wnaf() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t max_num_bits, size_t WNAF_SIZE>
std::vector< field_t< C > > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::compute_wnaf ( const Fr scalar)

Definition at line 405 of file biggroup_nafs.hpp.

◆ conditional_negate()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::conditional_negate ( const bool_ct predicate) const
inline

Definition at line 250 of file biggroup.hpp.

◆ conditional_select()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::conditional_select ( const element< Builder_, Fq, Fr, NativeGroup > &  other,
const bool_ct predicate 
) const
inline

Selects this if predicate is false, other if predicate is true.

Parameters
other
predicate
Returns
element

Definition at line 264 of file biggroup.hpp.

◆ construct_dummy()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static std::array< fr, PUBLIC_INPUTS_SIZE > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::construct_dummy ( )
inlinestatic

Construct a dummy element (the group generator) and return its limbs as fr constants.

Returns
std::array<fr, PUBLIC_INPUTS_SIZE>

Definition at line 61 of file biggroup.hpp.

◆ convert_constant_to_fixed_witness()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::convert_constant_to_fixed_witness ( Builder builder)
inline

Creates fixed witnesses from a constant element.

Definition at line 165 of file biggroup.hpp.

◆ convert_wnaf_values_to_witnesses() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t wnaf_size>
static std::vector< field_t< Builder > > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::convert_wnaf_values_to_witnesses ( Builder builder,
const uint64_t *  wnaf_values,
bool  is_negative,
size_t  rounds,
const bool  range_constrain_wnaf = true 
)
staticprivate

Convert wNAF values to witness values.

Parameters
builder
wnaf_values
is_negative
rounds
Returns
std::vector<field_t<Builder>>

For 4-bit window, each wNAF value is in the range [-15, 15]. We convert these to the range [0, 30] by adding 15 if is_negative = false and by subtracting from 15 if is_negative = true. This ensures that all values are non-negative, which is required for the ROM table lookup.

◆ convert_wnaf_values_to_witnesses() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t wnaf_size>
std::vector< field_t< C > > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::convert_wnaf_values_to_witnesses ( C builder,
const uint64_t *  wnaf_values,
bool  is_negative,
size_t  rounds,
const bool  range_constrain_wnaf 
)

Definition at line 71 of file biggroup_nafs.hpp.

◆ create_endo_pair_four_bit_table_plookup()

template<typename C , class Fq , class Fr , class G >
std::pair< typename element< C, Fq, Fr, G >::four_bit_table_plookup, typename element< C, Fq, Fr, G >::four_bit_table_plookup > bb::stdlib::element_default::element< C, Fq, Fr, G >::create_endo_pair_four_bit_table_plookup ( const element< Builder_, Fq, Fr, NativeGroup > &  input)
staticprivate

Create a endo pair four bit table for the given group element.

Template Parameters
C
Fq
Fr
G
Parameters
input
Returns
std::pair<four_bit_table_plookup, four_bit_table_plookup>
Index P = (x, y) Q = (β.x, y)
0 -15.P Q_0
1 -13.P Q_1
2 -11.P Q_2
3 -9.P Q_3
4 -7.P Q_4
5 -5.P Q_5
6 -3.P Q_6
7 -1.P Q_7
8 1.P Q_8
9 3.P Q_9
10 5.P Q_10
11 7.P Q_11
12 9.P Q_12
13 11.P Q_13
14 13.P Q_14
15 15.P Q_15

Definition at line 376 of file biggroup_tables.hpp.

◆ create_endo_pair_quad_lookup_table()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static std::pair< quad_lookup_table, quad_lookup_table > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::create_endo_pair_quad_lookup_table ( const std::array< element< Builder_, Fq, Fr, NativeGroup >, 4 > &  inputs)
inlinestaticprivate

Creates a pair of 4-bit lookup tables, the former corresponding to 4 input points, the latter corresponding to the endomorphism equivalent of the 4 input points (e.g. x -> \beta * x, y -> -y)

Definition at line 685 of file biggroup.hpp.

◆ create_group_element_rom_tables() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t num_elements>
static std::array< twin_rom_table< Builder >, Fq::NUM_LIMBS+1 > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::create_group_element_rom_tables ( const std::array< element< Builder_, Fq, Fr, NativeGroup >, num_elements > &  rom_data,
std::array< uint256_t, Fq::NUM_LIMBS *2 > &  limb_max 
)
staticprivate

◆ create_group_element_rom_tables() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t num_elements>
std::array< twin_rom_table< C >, Fq::NUM_LIMBS+1 > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::create_group_element_rom_tables ( const std::array< element< Builder_, Fq, Fr, NativeGroup >, num_elements > &  rom_data,
std::array< uint256_t, Fq::NUM_LIMBS *2 > &  limb_max 
)

Constructs a ROM table to look up linear combinations of group elements.

Template Parameters
C
Fq
Fr
G
num_elements
typename
Parameters
rom_datathe ROM table we are writing into
limb_maxthe maximum size of each limb in the ROM table.

When reading a group element out of the ROM table, we must know the maximum value of each coordinate's limbs. We take this value to be the maximum of the maximum values of the input limbs into the table!

Returns
std::array<twin_rom_table<C>, Fq::NUM_LIMBS + 1>

Definition at line 33 of file biggroup_tables.hpp.

◆ dbl()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::dbl ( ) const

Definition at line 270 of file biggroup_impl.hpp.

◆ fix_witness()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::fix_witness ( )
inline

Fix a witness. The value of the witness is constrained with a selector.

Definition at line 176 of file biggroup.hpp.

◆ from_witness()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::from_witness ( Builder ctx,
const typename NativeGroup::affine_element< Builder_, Fq, Fr, NativeGroup > &  input 
)
inlinestatic

Create a biggroup witness from a native group element, allocating new witnesses as necessary.

Parameters
ctx
input
Returns
element
Warning
Use this carefully, as its creating free witnesses.

Definition at line 113 of file biggroup.hpp.

◆ get_context() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
Builder * bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::get_context ( ) const
inline

Definition at line 427 of file biggroup.hpp.

◆ get_context() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
Builder * bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::get_context ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const
inline

Definition at line 438 of file biggroup.hpp.

◆ get_origin_tag()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
OriginTag bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::get_origin_tag ( ) const
inline

Definition at line 472 of file biggroup.hpp.

◆ get_staggered_wnaf_fragment_value()

template<typename C , class Fq , class Fr , class G >
template<size_t wnaf_size>
std::pair< uint64_t, bool > bb::stdlib::element_default::element< C, Fq, Fr, G >::get_staggered_wnaf_fragment_value ( const uint64_t  fragment_u64,
const uint64_t  stagger,
bool  is_negative,
bool  wnaf_skew 
)
staticprivate

Compute the stagger-related part of wNAF and the final skew.

Parameters
fragment_u64Stagger-masked lower bits of the scalar
staggerThe number of staggering bits
is_negativeIf the initial scalar is supposed to be subtracted
wnaf_skewThe skew of the stagger-right-shifted part of the scalar

Definition at line 16 of file biggroup_nafs.hpp.

◆ get_standard_form()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::get_standard_form ( ) const

Enforce x and y coordinates of a point to be (0,0) in the case of point at infinity.

We need to have a standard witness in Noir and the point at infinity can have non-zero random coefficients when we get it as output from our optimized algorithms. This function returns a (0,0) point, if it is a point at infinity

Definition at line 148 of file biggroup_impl.hpp.

◆ get_value()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
NativeGroup::affine_element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::get_value ( ) const
inline

Definition at line 359 of file biggroup.hpp.

◆ handle_points_at_infinity()

template<typename C , class Fq , class Fr , class G >
std::pair< std::vector< element< C, Fq, Fr, G > >, std::vector< Fr > > bb::stdlib::element_default::element< C, Fq, Fr, G >::handle_points_at_infinity ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  _points,
const std::vector< Fr > &  _scalars 
)
static

Replace all pairs (∞, scalar) by the pair (one, 0) where one is a fixed generator of the curve.

This is a step in enabling our our multiscalar multiplication algorithms to hande points at infinity.

Definition at line 81 of file biggroup_edgecase_handling.hpp.

◆ incomplete_assert_equal()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::incomplete_assert_equal ( const element< Builder_, Fq, Fr, NativeGroup > &  other,
const std::string  msg = "biggroup::incomplete_assert_equal" 
) const
inline

Asserts that two group elements are equal (i.e., x, y coordinates and infinity flag are all equal).

Parameters
other
msg

Note that checking the coordinates as well as the infinity flag opens up the possibility of honest prover unable to satisfy constraints if both points are at infinity but have different x, y. This is not a problem in practice as we should never have multiple representations of the point at infinity in a circuit.

Definition at line 296 of file biggroup.hpp.

◆ is_point_at_infinity()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
bool_ct bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::is_point_at_infinity ( ) const
inline

Definition at line 455 of file biggroup.hpp.

◆ mask_points()

template<typename C , class Fq , class Fr , class G >
std::pair< std::vector< element< C, Fq, Fr, G > >, std::vector< Fr > > bb::stdlib::element_default::element< C, Fq, Fr, G >::mask_points ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  _points,
const std::vector< Fr > &  _scalars 
)
static

Given two lists of points that need to be multiplied by scalars, create a new list of length +1 with original points masked, but the same scalar product sum.

Add +1G, +2G, +4G etc to the original points and adds a new point 2ⁿ⋅G and scalar x to the lists. By doubling the point every time, we ensure that no +-1 combination of 6 sequential elements run into edgecases, unless the points are deliberately constructed to trigger it.

Definition at line 41 of file biggroup_edgecase_handling.hpp.

◆ montgomery_ladder() [1/2]

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::montgomery_ladder ( const chain_add_accumulator to_add)

Implementation of montgomery_ladder using chain_add_accumulator.

If the input to montgomery_ladder is the output of a chain of additions, we can avoid computing the y-coordinate of the input to_add, which saves us a non-native field reduction.

We substitute to_add.y with lambda_prev * (to_add.x1_prev - to_add.x) - to_add.y1_prev

Here, x1_prev, y1_prev, lambda_prev are the values of x1, y1, lambda for the addition operation that PRODUCED to_add

The reason why this saves us gates, is because the montgomery ladder does not multiply to_add.y by any values i.e. to_add.y is only used in addition operations

This allows us to substitute to_add.y with the above relation without requiring additional field reductions

e.g. the term (lambda * (x3 - x1) + to_add.y) remains "quadratic" if we replace to_add.y with the above quadratic relation

Definition at line 465 of file biggroup_impl.hpp.

◆ montgomery_ladder() [2/2]

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::montgomery_ladder ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Compute one round of a Montgomery ladder: i.e. compute 2 * (*this) + other Compute D = A + B + A, where A = this and B = other

We can skip computing the y-coordinate of C = A + B:

To compute D = A + C, A=(x_1,y_1), we need the gradient of our two coordinates, specifically:

          y_3 - y_1    lambda_1 * (x_1 - x_3) - 2 * y_1                 2 * y_1

lambda_2 = __________ = ________________________________ = -\lambda_1 - _________ x_3 - x_1 x_3 - x_1 x_3 - x_1

We don't need y_3 to compute this. We can then compute D.x and D.y as usual:

D.x = lambda_2 * lambda_2 - (C.x + A.x) D.y = lambda_2 * (A.x - D.x) - A.y

Requires 5 non-native field reductions. Doubling and adding would require 6 Compute D = A + B + A, where A = this and B = other

We can skip computing the y-coordinate of C = A + B:

To compute D = A + C, A=(x_1,y_1), we need the gradient of our two coordinates, specifically:

          y_3 - y_1    lambda_1 * (x_1 - x_3) - 2 * y_1                 2 * y_1

lambda_2 = __________ = ________________________________ = -\lambda_1 - _________ x_3 - x_1 x_3 - x_1 x_3 - x_1

We don't need y_3 to compute this. We can then compute D.x and D.y as usual:

D.x = lambda_2 * lambda_2 - (C.x + A.x) D.y = lambda_2 * (A.x - D.x) - A.y

Definition at line 429 of file biggroup_impl.hpp.

◆ multiple_montgomery_ladder()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::multiple_montgomery_ladder ( const std::vector< chain_add_accumulator > &  add) const

Perform repeated iterations of the montgomery ladder algorithm.

For points P, Q, montgomery ladder computes R = (P + Q) + P i.e. it's "double-and-add" without explicit doublings.

This method can apply repeated iterations of the montgomery ladder. Each iteration reduces the number of field multiplications by 1, at the cost of more additions. (i.e. we don't compute intermediate y-coordinates).

The number of additions scales with the size of the input vector. The optimal input size appears to be 4.

Template Parameters
C
Fq
Fr
G
Parameters
add
Returns
element<C, Fq, Fr, G>

Definition at line 623 of file biggroup_impl.hpp.

◆ normalize()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::normalize ( ) const
inline

Definition at line 304 of file biggroup.hpp.

◆ one()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::one ( Builder ctx)
inlinestatic

Creates a constant group generator.

Definition at line 189 of file biggroup.hpp.

◆ operator*()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::operator* ( const Fr scalar) const

Implements scalar multiplication operator.

Definition at line 880 of file biggroup_impl.hpp.

◆ operator+()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::operator+ ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Definition at line 85 of file biggroup_impl.hpp.

◆ operator+=()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::operator+= ( const element< Builder_, Fq, Fr, NativeGroup > &  other)
inline

Definition at line 236 of file biggroup.hpp.

◆ operator-() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::operator- ( ) const
inline

Definition at line 230 of file biggroup.hpp.

◆ operator-() [2/2]

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::operator- ( const element< Builder_, Fq, Fr, NativeGroup > &  other) const

Definition at line 160 of file biggroup_impl.hpp.

◆ operator-=()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::operator-= ( const element< Builder_, Fq, Fr, NativeGroup > &  other)
inline

Definition at line 241 of file biggroup.hpp.

◆ operator=() [1/2]

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > & bb::stdlib::element_default::element< C, Fq, Fr, G >::operator= ( const element< Builder_, Fq, Fr, NativeGroup > &  other)

Definition at line 61 of file biggroup_impl.hpp.

◆ operator=() [2/2]

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > & bb::stdlib::element_default::element< C, Fq, Fr, G >::operator= ( element< Builder_, Fq, Fr, NativeGroup > &&  other)
noexcept

Definition at line 73 of file biggroup_impl.hpp.

◆ point_at_infinity()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::point_at_infinity ( Builder ctx)
inlinestatic

Definition at line 198 of file biggroup.hpp.

◆ quadruple_and_add()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::quadruple_and_add ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  to_add) const

Compute 4.P + to_add[0] + ... + to_add[to_add.size() - 1].

Used in wnaf_batch_mul method. Combining operations requires fewer bigfield reductions.

Method computes R[i] = (2P + A[0]) + (2P + A[1]) + A[2] + ... + A[n-1]

Template Parameters
C
Fq
Fr
G
Parameters
to_add
Returns
element<C, Fq, Fr, G>

Definition at line 511 of file biggroup_impl.hpp.

◆ read_group_element_rom_tables() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t num_elements>
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::read_group_element_rom_tables ( const std::array< twin_rom_table< Builder >, Fq::NUM_LIMBS+1 > &  tables,
const field_t< Builder > &  index,
const std::array< uint256_t, Fq::NUM_LIMBS *2 > &  limb_max 
)
staticprivate

◆ read_group_element_rom_tables() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::read_group_element_rom_tables ( const std::array< twin_rom_table< C >, Fq::NUM_LIMBS+1 > &  tables,
const field_t< C > &  index,
const std::array< uint256_t, Fq::NUM_LIMBS *2 > &  limb_max 
)

Definition at line 74 of file biggroup_tables.hpp.

◆ reconstruct_bigfield_from_wnaf()

template<typename C , class Fq , class Fr , class G >
template<size_t wnaf_size>
Fr bb::stdlib::element_default::element< C, Fq, Fr, G >::reconstruct_bigfield_from_wnaf ( Builder builder,
const std::vector< field_t< Builder > > &  wnaf,
const bool_ct positive_skew,
const bool_ct negative_skew,
const field_t< Builder > &  stagger_fragment,
const size_t  stagger,
const size_t  rounds 
)
staticprivate

Reconstruct a scalar from its wNAF representation in circuit.

Parameters
builder
wnafThe wNAF representation of the scalar
positive_skewThe skew to be applied if the scalar is non-negative
stagger_fragmentThe stagger-related fragment of the scalar
staggerThe number of staggering bits
roundsThe number of rounds in the wNAF representation
Returns
Fr The reconstructed scalar

Definition at line 105 of file biggroup_nafs.hpp.

◆ reconstruct_from_public()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::reconstruct_from_public ( const std::span< const Fr, PUBLIC_INPUTS_SIZE > &  limbs)
inlinestatic

Reconstruct a biggroup element from limbs of its coordinates (generally stored in the public inputs)

Parameters
limbs
Returns
element

Definition at line 96 of file biggroup.hpp.

◆ reduce()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::reduce ( ) const
inline

Definition at line 313 of file biggroup.hpp.

◆ scalar_mul()

template<typename C , class Fq , class Fr , class G >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< C, Fq, Fr, G >::scalar_mul ( const Fr scalar,
const size_t  max_num_bits = 0 
) const

Implements scalar multiplication that supports short scalars. For multiple scalar multiplication use one of the batch_mul methods to save gates.

Parameters
scalarA field element. If max_num_bits>0, the length of the scalar must not exceed max_num_bits.
max_num_bitsEven integer < 254. Default value 0 corresponds to scalar multiplication by scalars of unspecified length.
Returns
element<C, Fq, Fr, G>

Let's say we have some curve E defined over a field Fq. The order of E is p, which is prime.

Now lets say we are constructing a SNARK circuit over another curve E2, whose order is r.

All of our addition / multiplication / custom gates are going to be evaluating low degree multivariate polynomials modulo r.

E.g. our addition/mul gate (for wires a, b, c and selectors q_m, q_l, q_r, q_o, q_c) is:

q_m * a * b + q_l * a + q_r * b + q_o * c + q_c = 0 mod r

We want to construct a circuit that evaluates scalar multiplications of curve E. Where q > r and p > r.

i.e. we need to perform arithmetic in one prime field, using prime field arithmetic in a completely different prime field.

To do this, we need to emulate a binary (or in our case quaternary) number system in Fr, so that we can use the binary/quaternary basis to emulate arithmetic in Fq. Which is very messy. See bigfield.hpp for the specifics.

Definition at line 895 of file biggroup_impl.hpp.

◆ secp256k1_ecdsa_mul() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename X = NativeGroup, typename = typename std::enable_if_t<std::is_same<X, secp256k1::g1>::value>>
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::secp256k1_ecdsa_mul ( const element< Builder_, Fq, Fr, NativeGroup > &  pubkey,
const Fr u1,
const Fr u2 
)
static

◆ secp256k1_ecdsa_mul() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<typename , typename >
element< C, Fq, Fr, G > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::secp256k1_ecdsa_mul ( const element< Builder_, Fq, Fr, NativeGroup > &  pubkey,
const Fr u1,
const Fr u2 
)

Compute `out = u1.[1] + u2.[pubkey]

Split scalar u1 into 129-bit short scalars u1_lo, u1_hi, where u1 = u1_lo * \lambda u1_hi (\lambda is the cube root of unity modulo the secp256k1 group order)

Covert u1_lo and u1_hi into an 8-bit sliding window NAF. Our base point is the G1 generator. We have a precomputed size-256 plookup table of the generator point, multiplied by all possible wNAF values

We also split scalar u2 using the secp256k1 endomorphism. Convert short scalars into 4-bit sliding window NAFs. We will store the lookup table of all possible base-point wNAF states in a ROM table (it's variable-base scalar multiplication in a SNARK with a lookup table! ho ho ho)

The wNAFs u1_lo_wnaf, u1_hi_wnaf, u2_lo_wnaf, u2_hi_wnaf are each offset by 1 bit relative to each other. i.e. we right-shift u2_hi by 1 bit before computing its wNAF we right-shift u1_lo by 2 bits we right-shift u1_hi by 3 bits we do not shift u2_lo

We do this to ensure that we are never adding more than 1 point into our accumulator when performing our double-and-add scalar multiplication. It is more efficient to use the montgomery ladder algorithm, compared against doubling an accumulator and adding points into it.

The bits removed by the right-shifts are stored in the wnaf's respective least_significant_wnaf_fragment member variable

We do NOT range constrain the wNAF entries, because we will use them to lookup in a ROM/regular table. The ROM/regular table lookup implicitly enforces the range constraint

Construct our 4-bit variable-base and 8-bit fixed base lookup tables

main double-and-add loop

Acc = Acc + Acc Acc = Acc + Acc Acc = Acc + u2_hi_wnaf.[endoP2] + Acc Acc = Acc + u2_lo_wnaf.[P2] + Acc Acc = Acc + u1_hi_wnaf.[endoP1] + Acc Acc = Acc + u1_lo_wnaf.[P1] + Acc Acc = Acc + u2_hi_wnaf.[endoP2] + Acc Acc = Acc + u2_lo_wnaf.[P2] + Acc

We add u2 points into the accumulator twice per 'round' as we only have a 4-bit lookup table (vs the 8-bit table for u1)

At the conclusion of this loop, we will need to add a final contribution from u2_hi, u1_lo, u1_hi. This is because we offset our wNAFs to take advantage of the montgomery ladder, but this means we have doubled our accumulator AFTER adding our final wnaf contributions from u2_hi, u1_lo and u1_hi

Add the final contributions from u2_hi, u1_lo, u1_hi

Handle wNAF skew.

scalars represented via the non-adjacent form can only be odd. If our scalars are even, we must either add or subtract the relevant base point into the accumulator

Definition at line 19 of file biggroup_secp256k1.hpp.

◆ set_free_witness_tag()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::set_free_witness_tag ( )
inline

Set the free witness flag for the element's tags.

Definition at line 490 of file biggroup.hpp.

◆ set_origin_tag()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::set_origin_tag ( OriginTag  tag) const
inline

Definition at line 465 of file biggroup.hpp.

◆ set_point_at_infinity()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::set_point_at_infinity ( const bool_ct is_infinity,
const bool &  add_to_used_witnesses = false 
)
inline

Definition at line 456 of file biggroup.hpp.

◆ set_public()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
uint32_t bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::set_public ( ) const
inline

Set the witness indices for the x and y coordinates to public.

Returns
uint32_t Index at which the representation is stored in the public inputs

Definition at line 82 of file biggroup.hpp.

◆ to_byte_array()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
byte_array< Builder > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::to_byte_array ( ) const
inline

Serialize the element to a byte array in form: (yhi || ylo || xhi || xlo).

Returns
byte_array<Builder>

Definition at line 217 of file biggroup.hpp.

◆ unset_free_witness_tag()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::unset_free_witness_tag ( )
inline

Unset the free witness flag for the element's tags.

Definition at line 480 of file biggroup.hpp.

◆ validate_on_curve()

template<class Builder_ , class Fq , class Fr , class NativeGroup >
void bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::validate_on_curve ( std::string const &  msg = "biggroup::validate_on_curve") const
inline

Check that the point is on the curve.

Definition at line 138 of file biggroup.hpp.

◆ wnaf_batch_mul() [1/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t max_num_bits>
element< C, Fq, Fr, G > bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::wnaf_batch_mul ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  _points,
const std::vector< Fr > &  _scalars 
)

Multiscalar multiplication that utilizes 4-bit wNAF lookup tables.

This is more efficient than points-as-linear-combinations lookup tables, if the number of points is 3 or fewer.

Definition at line 21 of file biggroup_batch_mul.hpp.

◆ wnaf_batch_mul() [2/2]

template<class Builder_ , class Fq , class Fr , class NativeGroup >
template<size_t max_num_bits = 0>
static element bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::wnaf_batch_mul ( const std::vector< element< Builder_, Fq, Fr, NativeGroup > > &  points,
const std::vector< Fr > &  scalars 
)
static

Friends And Related Symbol Documentation

◆ element_test_accessor

template<class Builder_ , class Fq , class Fr , class NativeGroup >
friend class element_test_accessor
friend

Definition at line 501 of file biggroup.hpp.

Member Data Documentation

◆ _is_infinity

template<class Builder_ , class Fq , class Fr , class NativeGroup >
bool_ct bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::_is_infinity
private

Definition at line 504 of file biggroup.hpp.

◆ PUBLIC_INPUTS_SIZE

template<class Builder_ , class Fq , class Fr , class NativeGroup >
constexpr size_t bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::PUBLIC_INPUTS_SIZE = BIGGROUP_PUBLIC_INPUTS_SIZE
staticconstexpr

Definition at line 33 of file biggroup.hpp.

◆ x

template<class Builder_ , class Fq , class Fr , class NativeGroup >
Fq bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::x

Definition at line 497 of file biggroup.hpp.

◆ y

template<class Builder_ , class Fq , class Fr , class NativeGroup >
Fq bb::stdlib::element_default::element< Builder_, Fq, Fr, NativeGroup >::y

Definition at line 498 of file biggroup.hpp.


The documentation for this class was generated from the following files: