Barretenberg
The ZK-SNARK library at the core of Aztec
Loading...
Searching...
No Matches
polynomial.hpp
Go to the documentation of this file.
1// === AUDIT STATUS ===
2// internal: { status: not started, auditors: [], date: YYYY-MM-DD }
3// external_1: { status: not started, auditors: [], date: YYYY-MM-DD }
4// external_2: { status: not started, auditors: [], date: YYYY-MM-DD }
5// =====================
6
7#pragma once
17#include "evaluation_domain.hpp"
19#include <cstddef>
20#include <fstream>
21#include <ranges>
22namespace bb {
23
24/* Span class with a start index offset.
25 * We conceptually have a span like a_0 + a_1 x ... a_n x^n and then multiply by x^start_index.
26 * This allows more efficient representation than a fully defined span for 'islands' of zeroes. */
27template <typename Fr> struct PolynomialSpan {
34 size_t end_index() const { return start_index + size(); }
35 Fr* data() { return span.data(); }
36 size_t size() const { return span.size(); }
37 Fr& operator[](size_t index)
38 {
39 ASSERT_DEBUG(index >= start_index);
40 ASSERT_DEBUG(index < end_index());
41 return span[index - start_index];
42 }
43 const Fr& operator[](size_t index) const
44 {
45 ASSERT_DEBUG(index >= start_index);
46 ASSERT_DEBUG(index < end_index());
47 return span[index - start_index];
48 }
50 {
51 if (offset > span.size()) { // Return a null span
52 return { 0, span.subspan(span.size()) };
53 }
54 size_t new_length = std::min(length, span.size() - offset);
55 return { start_index + offset, span.subspan(offset, new_length) };
56 }
58};
59
75template <typename Fr> class Polynomial {
76 public:
77 using FF = Fr;
78 enum class DontZeroMemory { FLAG };
79
80 Polynomial(size_t size, size_t virtual_size, size_t start_index = 0);
81 // Intended just for plonk, where size == virtual_size always
83 : Polynomial(size, size) {};
84
85 // Constructor that does not initialize values, use with caution to save time.
93 Polynomial(const Polynomial& other);
94 Polynomial(const Polynomial& other, size_t target_size);
95
96 Polynomial(Polynomial&& other) noexcept = default;
97
98 Polynomial(std::span<const Fr> coefficients, size_t virtual_size);
99
101 : Polynomial(coefficients, coefficients.size())
102 {}
103
108 {
109 return Polynomial(/*actual size*/ virtual_size - 1, virtual_size, /*shiftable offset*/ 1);
110 }
111 // Allow polynomials to be entirely reset/dormant
112 Polynomial() = default;
113
122
123 // move assignment
124 Polynomial& operator=(Polynomial&& other) noexcept = default;
126 ~Polynomial() = default;
127
131 Polynomial share() const;
132
134
139 bool is_zero() const
140 {
141 if (is_empty()) {
142 throw_or_abort("Checking is_zero on an empty Polynomial!");
143 }
144 for (size_t i = 0; i < size(); i++) {
145 if (coefficients_.data()[i] != 0) {
146 return false;
147 }
148 }
149 return true;
150 }
151
152 bool operator==(Polynomial const& rhs) const;
153
161 const Fr& get(size_t i, size_t virtual_padding = 0) const { return coefficients_.get(i, virtual_padding); };
162
163 bool is_empty() const { return coefficients_.size() == 0; }
164
171 Polynomial shifted() const;
172
177 Polynomial right_shifted(const size_t magnitude) const;
178
186 Polynomial reverse() const;
187
202 Fr evaluate_mle(std::span<const Fr> evaluation_points, bool shift = false) const;
203
222 Polynomial partial_evaluate_mle(std::span<const Fr> evaluation_points) const;
223
228
240
241 Fr evaluate(const Fr& z, size_t target_size) const;
242 Fr evaluate(const Fr& z) const;
243
251
253
260
267
274
275 void multiply_chunk(const ThreadChunk& chunk, Fr scaling_factor);
276
282 void mask()
283 {
284 // Ensure there is sufficient space to add masking and also that we have memory allocated up to the virtual_size
285 BB_ASSERT_GTE(virtual_size(), NUM_MASKED_ROWS);
287
288 for (size_t i = virtual_size() - NUM_MASKED_ROWS; i < virtual_size(); ++i) {
290 }
291 }
292
293 std::size_t size() const { return coefficients_.size(); }
294 std::size_t virtual_size() const { return coefficients_.virtual_size(); }
295 void increase_virtual_size(const size_t size_in) { coefficients_.increase_virtual_size(size_in); };
296
297 Fr* data() { return coefficients_.data(); }
298 const Fr* data() const { return coefficients_.data(); }
299
308 Fr& at(size_t index) { return coefficients_[index]; }
309 const Fr& at(size_t index) const { return coefficients_[index]; }
310
311 const Fr& operator[](size_t i) { return get(i); }
312 const Fr& operator[](size_t i) const { return get(i); }
313
314 static Polynomial random(size_t size, size_t start_index = 0)
315 {
316 BB_BENCH_NAME("generate random polynomial");
317
319 }
320
321 static Polynomial random(size_t size, size_t virtual_size, size_t start_index)
322 {
325 size,
326 [&](size_t i) { p.coefficients_.data()[i] = Fr::random_element(); },
328 return p;
329 }
330
338
345 Polynomial expand(const size_t new_start_index, const size_t new_end_index) const;
346
352 void shrink_end_index(const size_t new_end_index);
353
360 Polynomial full() const;
361
362 // The extents of the actual memory-backed polynomial region
363 size_t start_index() const { return coefficients_.start_; }
364 size_t end_index() const { return coefficients_.end_; }
365
374 std::span<Fr> coeffs(size_t offset = 0) { return { data() + offset, data() + size() }; }
375 std::span<const Fr> coeffs(size_t offset = 0) const { return { data() + offset, data() + size() }; }
380 operator PolynomialSpan<Fr>() { return { start_index(), coeffs() }; }
381
386 operator PolynomialSpan<const Fr>() const { return { start_index(), coeffs() }; }
387
388 auto indices() const { return std::ranges::iota_view(start_index(), end_index()); }
389 auto indexed_values() { return zip_view(indices(), coeffs()); }
390 auto indexed_values() const { return zip_view(indices(), coeffs()); }
394 bool is_valid_set_index(size_t index) const { return (index >= start_index() && index < end_index()); }
398 void set_if_valid_index(size_t index, const Fr& value)
399 {
401 if (is_valid_set_index(index)) {
402 at(index) = value;
403 }
404 }
405
418 template <typename T> void copy_vector(const std::vector<T>& vec)
419 {
420 BB_ASSERT_LTE(vec.size(), end_index());
421 BB_ASSERT_LTE(vec.size() - start_index(), size());
422 for (size_t i = start_index(); i < vec.size(); i++) {
423 at(i) = vec[i];
424 }
425 }
426
427 /*
428 * @brief For quick and dirty comparisons. ONLY for development and log use!
429 */
431 {
432 Fr result{ 0 };
433 for (size_t i = start_index(); i < end_index(); i++) {
434 result += (*this)[i] * i;
435 }
436 return result;
437 }
438
439 private:
440 // allocate a fresh memory pointer for backing memory
441 // DOES NOT initialize memory
442 void allocate_backing_memory(size_t size, size_t virtual_size, size_t start_index);
443
444 // safety check for in place operations
445 bool in_place_operation_viable(size_t domain_size) { return (size() >= domain_size); }
446
447 // The underlying memory, with a bespoke (but minimal) shared array struct that fits our needs.
448 // Namely, it supports polynomial shifts and 'virtual' zeroes past a size up until a 'virtual' size.
450};
451// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays)
452template <typename Fr> std::shared_ptr<Fr[]> _allocate_aligned_memory(size_t n_elements)
453{
454 // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays)
455 return std::static_pointer_cast<Fr[]>(get_mem_slab(sizeof(Fr) * n_elements));
456}
457
462template <typename Fr_>
464 const SharedShiftedVirtualZeroesArray<Fr_>& coefficients,
465 bool shift)
466{
467 constexpr bool is_native = IsAnyOf<Fr_, bb::fr, grumpkin::fr>;
468 // shift ==> native
469 ASSERT(!shift || is_native);
470
471 if (coefficients.size() == 0) {
472 return Fr_(0);
473 }
474
475 const size_t n = evaluation_points.size();
476 const size_t dim = numeric::get_msb(coefficients.end_ - 1) + 1; // Round up to next power of 2
477
478 // To simplify handling of edge cases, we assume that the index space is always a power of 2
479 BB_ASSERT_EQ(coefficients.virtual_size(), static_cast<size_t>(1 << n));
480
481 // We first fold over dim rounds l = 0,...,dim-1.
482 // in round l, n_l is the size of the buffer containing the Polynomial partially evaluated
483 // at u₀,..., u_l.
484 // In round 0, this is half the size of dim
485 size_t n_l = 1 << (dim - 1);
486
487 // temporary buffer of half the size of the Polynomial
488 // TODO(https://github.com/AztecProtocol/barretenberg/issues/1096): Make this a Polynomial with
489 // DontZeroMemory::FLAG
490 auto tmp_ptr = _allocate_aligned_memory<Fr_>(sizeof(Fr_) * n_l);
491 auto tmp = tmp_ptr.get();
492
493 size_t offset = 0;
494 if constexpr (is_native) {
495 if (shift) {
496 BB_ASSERT_EQ(coefficients.get(0), Fr_::zero());
497 offset++;
498 }
499 }
500
501 Fr_ u_l = evaluation_points[0];
502
503 // Note below: i * 2 + 1 + offset might equal virtual_size. This used to subtlely be handled by extra capacity
504 // padding (and there used to be no assert time checks, which this constant helps with).
505 const size_t ALLOW_ONE_PAST_READ = 1;
506 for (size_t i = 0; i < n_l; ++i) {
507 // curr[i] = (Fr(1) - u_l) * prev[i * 2] + u_l * prev[(i * 2) + 1];
508 tmp[i] = coefficients.get(i * 2 + offset) +
509 u_l * (coefficients.get(i * 2 + 1 + offset, ALLOW_ONE_PAST_READ) - coefficients.get(i * 2 + offset));
510 }
511
512 // partially evaluate the dim-1 remaining points
513 for (size_t l = 1; l < dim; ++l) {
514 n_l = 1 << (dim - l - 1);
515 u_l = evaluation_points[l];
516 for (size_t i = 0; i < n_l; ++i) {
517 tmp[i] = tmp[i * 2] + u_l * (tmp[(i * 2) + 1] - tmp[i * 2]);
518 }
519 }
520 auto result = tmp[0];
521
522 // We handle the "trivial" dimensions which are full of zeros.
523 for (size_t i = dim; i < n; i++) {
524 result *= (Fr_(1) - evaluation_points[i]);
525 }
526
527 return result;
528}
529
533template <typename Fr_>
535 const SharedShiftedVirtualZeroesArray<Fr_>& coefficients)
536{
537 return _evaluate_mle(evaluation_points, coefficients, false);
538}
539
540template <typename Fr> inline std::ostream& operator<<(std::ostream& os, const Polynomial<Fr>& p)
541{
542 if (p.size() == 0) {
543 return os << "[]";
544 }
545 if (p.size() == 1) {
546 return os << "[ data " << p[0] << "]";
547 }
548 return os << "[ data\n"
549 << " " << p[0] << ",\n"
550 << " " << p[1] << ",\n"
551 << " ... ,\n"
552 << " " << p[p.size() - 2] << ",\n"
553 << " " << p[p.size() - 1] << ",\n"
554 << "]";
555}
556
557template <typename Poly, typename... Polys> auto zip_polys(Poly&& poly, Polys&&... polys)
558{
559 // Ensure all polys have the same start_index() and end_index() as poly
560 // Use fold expression to check all polys exactly match our size
561 // Wrap BB_ASSERT_EQ_RELEASE in a lambda to make it usable in a fold expression
562 auto check_indices = [&](const auto& other) {
563 BB_ASSERT_EQ(poly.start_index(), other.start_index());
564 BB_ASSERT_EQ(poly.end_index(), other.end_index());
565 };
566 // Apply the lambda to each poly in the parameter pack
567 (check_indices(polys), ...);
568 return zip_view(poly.indices(), poly.coeffs(), polys.coeffs()...);
569}
570} // namespace bb
#define BB_ASSERT_GTE(left, right,...)
Definition assert.hpp:133
#define BB_ASSERT_EQ(actual, expected,...)
Definition assert.hpp:88
#define BB_ASSERT_LTE(left, right,...)
Definition assert.hpp:163
#define ASSERT(expression,...)
Definition assert.hpp:77
#define ASSERT_DEBUG(expression,...)
Definition assert.hpp:54
#define BB_BENCH_NAME(name)
Definition bb_bench.hpp:218
Structured polynomial class that represents the coefficients 'a' of a_0 + a_1 x .....
Polynomial(size_t size, size_t virtual_size, DontZeroMemory flag)
Polynomial & operator=(Polynomial &&other) noexcept=default
Polynomial shifted() const
Returns a Polynomial the left-shift of self.
size_t start_index() const
Polynomial & operator*=(Fr scaling_factor)
sets this = p(X) to s⋅p(X)
Polynomial(Polynomial &&other) noexcept=default
bool is_empty() const
Polynomial partial_evaluate_mle(std::span< const Fr > evaluation_points) const
Partially evaluates in the last k variables a polynomial interpreted as a multilinear extension.
static Polynomial random(size_t size, size_t start_index=0)
Polynomial()=default
Polynomial expand(const size_t new_start_index, const size_t new_end_index) const
Expands the polynomial with new start_index and end_index The value of the polynomial remains the sam...
Fr compute_kate_opening_coefficients(const Fr &z)
std::size_t virtual_size() const
Fr evaluate(const Fr &z, size_t target_size) const
SharedShiftedVirtualZeroesArray< Fr > coefficients_
Polynomial(const Polynomial &other)
void increase_virtual_size(const size_t size_in)
std::span< Fr > coeffs(size_t offset=0)
Strictly iterates the defined region of the polynomial. We keep this explicit, instead of having an i...
void copy_vector(const std::vector< T > &vec)
Copy over values from a vector that is of a convertible type.
auto indices() const
auto indexed_values() const
bool in_place_operation_viable(size_t domain_size)
Polynomial & operator=(const Polynomial &other)
void multiply_chunk(const ThreadChunk &chunk, Fr scaling_factor)
void mask()
Add random values to the coefficients of a polynomial. In practice, this is used for ensuring the com...
Fr evaluate_mle(std::span< const Fr > evaluation_points, bool shift=false) const
evaluate multi-linear extension p(X_0,…,X_{n-1}) = \sum_i a_i*L_i(X_0,…,X_{n-1}) at u = (u_0,...
Polynomial(const Polynomial &other, size_t target_size)
size_t end_index() const
Fr debug_hash() const
const Fr & get(size_t i, size_t virtual_padding=0) const
Retrieves the value at the specified index.
Polynomial(size_t size)
Polynomial & operator-=(PolynomialSpan< const Fr > other)
subtracts the polynomial q(X) 'other'.
Polynomial share() const
static Polynomial random(size_t size, size_t virtual_size, size_t start_index)
Polynomial reverse() const
Returns the polynomial equal to the reverse of self.
Polynomial right_shifted(const size_t magnitude) const
Returns a Polynomial equal to the right-shift-by-magnitude of self.
Fr compute_barycentric_evaluation(const Fr &z, const EvaluationDomain< Fr > &domain)
Fr & at(size_t index)
Our mutable accessor, unlike operator[]. We abuse precedent a bit to differentiate at() and operator[...
void add_scaled(PolynomialSpan< const Fr > other, Fr scaling_factor) &
adds the polynomial q(X) 'other', multiplied by a scaling factor.
bool operator==(Polynomial const &rhs) const
void shrink_end_index(const size_t new_end_index)
The end_index of the polynomial is decreased without any memory de-allocation. This is a very fast wa...
Polynomial & operator+=(PolynomialSpan< const Fr > other)
adds the polynomial q(X) 'other'.
const Fr & at(size_t index) const
void add_scaled_chunk(const ThreadChunk &chunk, PolynomialSpan< const Fr > other, Fr scaling_factor) &
~Polynomial()=default
static Polynomial shiftable(size_t virtual_size)
Utility to create a shiftable polynomial of given virtual size.
const Fr * data() const
Polynomial(size_t size, DontZeroMemory flag)
static Polynomial create_non_parallel_zero_init(size_t size, size_t virtual_size)
A factory to construct a polynomial where parallel initialization is not possible (e....
void factor_roots(const Fr &root)
Divides p(X) by (X-r) in-place. Assumes that p(rⱼ)=0 for all j.
void allocate_backing_memory(size_t size, size_t virtual_size, size_t start_index)
void set_if_valid_index(size_t index, const Fr &value)
Like setting with at(), but allows zeroes to result in no set.
std::size_t size() const
bool is_zero() const
Check whether or not a polynomial is identically zero.
std::span< const Fr > coeffs(size_t offset=0) const
bool is_valid_set_index(size_t index) const
Is this index valid for a set? i.e. calling poly.at(index) = value.
const Fr & operator[](size_t i) const
Polynomial full() const
Copys the polynomial, but with the whole address space usable. The value of the polynomial remains th...
auto indexed_values()
const Fr & operator[](size_t i)
Polynomial(std::span< const Fr > coefficients)
uint8_t const size_t length
Definition data_store.hpp:9
ssize_t offset
Definition engine.cpp:36
std::ostream & operator<<(std::ostream &os, uint256_t const &a)
Definition uint256.hpp:245
constexpr T get_msb(const T in)
Definition get_msb.hpp:47
void factor_roots(std::span< Fr > polynomial, const Fr &root)
Divides p(X) by (X-r) in-place.
constexpr size_t ALWAYS_MULTITHREAD
Definition thread.hpp:155
Entry point for Barretenberg command-line interface.
std::shared_ptr< Fr[]> _allocate_aligned_memory(size_t n_elements)
std::shared_ptr< void > get_mem_slab(size_t size)
auto zip_polys(Poly &&poly, Polys &&... polys)
void parallel_for_heuristic(size_t num_points, const std::function< void(size_t, size_t, size_t)> &func, size_t heuristic_cost)
Split a loop into several loops running in parallel based on operations in 1 iteration.
Definition thread.cpp:171
Fr_ _evaluate_mle(std::span< const Fr_ > evaluation_points, const SharedShiftedVirtualZeroesArray< Fr_ > &coefficients, bool shift)
Internal implementation to support both native and stdlib circuit field types.
Fr_ generic_evaluate_mle(std::span< const Fr_ > evaluation_points, const SharedShiftedVirtualZeroesArray< Fr_ > &coefficients)
Static exposed implementation to support both native and stdlib circuit field types.
constexpr decltype(auto) get(::tuplet::tuple< T... > &&t) noexcept
Definition tuple.hpp:13
Curve::ScalarField Fr
A shared pointer array template that represents a virtual array filled with zeros up to virtual_size_...
const T & get(size_t index, size_t virtual_padding=0) const
Retrieves the value at the specified index, or 'zero'. Optimizes for e.g. 256-bit fields by storing a...
size_t end_
The ending index of the memory-backed range.
PolynomialSpan subspan(size_t offset, size_t length)
size_t size() const
Fr & operator[](size_t index)
std::span< Fr > span
size_t end_index() const
PolynomialSpan(size_t start_index, std::span< Fr > span)
const Fr & operator[](size_t index) const
static field random_element(numeric::RNG *engine=nullptr) noexcept
BB_INLINE constexpr bool is_zero() const noexcept
void throw_or_abort(std::string const &err)